Papers
Topics
Authors
Recent
2000 character limit reached

Can Active Label Correction Improve LLM-based Modular AI Systems? (2401.05467v3)

Published 10 Jan 2024 in cs.LG and cs.AI

Abstract: Modular AI systems can be developed using LLM-prompts-based modules to minimize deployment time even for complex tasks. However, these systems do not always perform well and improving them using the data traces collected from a deployment remains an open challenge. The data traces contain LLM inputs and outputs, but the annotations from LLMs are noisy. We hypothesize that Active Label Correction (ALC) can be use on the collected data to train smaller task-specific improved models that can replace LLM-based modules. In this paper, we study the noise in three GPT-3.5-annotated datasets and their denoising with human feedback. We also propose a novel method ALC3 that iteratively applies three updates to the training dataset: auto-correction, correction using human feedback and filtering. Our results show that ALC3 can lead to oracle performance with feedback on 17-24% fewer examples than the number of noisy examples in the dataset across three different NLP tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com