Papers
Topics
Authors
Recent
2000 character limit reached

Online Action Recognition for Human Risk Prediction with Anticipated Haptic Alert via Wearables (2401.05365v1)

Published 14 Dec 2023 in eess.SP and cs.LG

Abstract: This paper proposes a framework that combines online human state estimation, action recognition and motion prediction to enable early assessment and prevention of worker biomechanical risk during lifting tasks. The framework leverages the NIOSH index to perform online risk assessment, thus fitting real-time applications. In particular, the human state is retrieved via inverse kinematics/dynamics algorithms from wearable sensor data. Human action recognition and motion prediction are achieved by implementing an LSTM-based Guided Mixture of Experts architecture, which is trained offline and inferred online. With the recognized actions, a single lifting activity is divided into a series of continuous movements and the Revised NIOSH Lifting Equation can be applied for risk assessment. Moreover, the predicted motions enable anticipation of future risks. A haptic actuator, embedded in the wearable system, can alert the subject of potential risk, acting as an active prevention device. The performance of the proposed framework is validated by executing real lifting tasks, while the subject is equipped with the iFeel wearable system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. P. P. F. Kuijer, J. H. Verbeek, B. Visser, L. A. Elders, N. Van Roden, M. E. Van den Wittenboer, M. Lebbink, A. Burdorf, and C. T. Hulshof, “An evidence-based multidisciplinary practice guideline to reduce the workload due to lifting for preventing work-related low back pain,” Annals of occupational and environmental medicine, vol. 26, no. 1, pp. 1–9, 2014.
  2. M.-L. Lu, T. R. Waters, E. Krieg, and D. Werren, “Efficacy of the revised niosh lifting equation to predict risk of low-back pain associated with manual lifting: a one-year prospective study,” Human factors, vol. 56, no. 1, pp. 73–85, 2014.
  3. T. R. Waters, M.-L. Lu, L. A. Piacitelli, D. Werren, and J. A. Deddens, “Efficacy of the revised niosh lifting equation to predict risk of low back pain due to manual lifting: expanded cross-sectional analysis,” Journal of Occupational and Environmental Medicine, pp. 1061–1067, 2011.
  4. T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised niosh equation for the design and evaluation of manual lifting tasks,” Ergonomics, vol. 36, no. 7, pp. 749–776, 1993.
  5. T. R. Waters, V. Putz-Anderson, and A. Garg, “Applications manual for the revised niosh lifting equation,” 1994.
  6. P. G. Dempsey, “Usability of the revised niosh lifting equation,” Ergonomics, vol. 45, no. 12, pp. 817–828, 2002.
  7. S. A. Lavender, G. B. Andersson, O. D. Schipplein, and H. J. Fuentes, “The effects of initial lifting height, load magnitude, and lifting speed on the peak dynamic l5/s1 moments,” International Journal of Industrial Ergonomics, vol. 31, no. 1, pp. 51–59, 2003.
  8. A. Ranavolo, T. Varrecchia, M. Rinaldi, A. Silvetti, M. Serrao, S. Conforto, and F. Draicchio, “Mechanical lifting energy consumption in work activities designed by means of the “revised niosh lifting equation”,” Industrial health, vol. 55, no. 5, pp. 444–454, 2017.
  9. A. Ranavolo, S. Mari, C. Conte, M. Serrao, A. Silvetti, S. Iavicoli, and F. Draicchio, “A new muscle co-activation index for biomechanical load evaluation in work activities,” Ergonomics, vol. 58, no. 6, pp. 966–979, 2015.
  10. A. Shafti, A. Ataka, B. U. Lazpita, A. Shiva, H. A. Wurdemann, and K. Althoefer, “Real-time robot-assisted ergonomics,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 1975–1981.
  11. L. Fortini, M. Lorenzini, W. Kim, E. De Momi, and A. Ajoudani, “A real-time tool for human ergonomics assessment based on joint compressive forces,” in 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).   IEEE, 2020, pp. 1164–1170.
  12. L. Fortini, W. Kim, M. Lorenzini, E. De Momi, and A. Ajoudani, “A framework for real-time and personalisable human ergonomics monitoring,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 11 101–11 107.
  13. R. Zhao, W. Xu, H. Su, and Q. Ji, “Bayesian hierarchical dynamic model for human action recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 7733–7742.
  14. S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp. 221–231, 2012.
  15. A. Hernandez, J. Gall, and F. Moreno-Noguer, “Human motion prediction via spatio-temporal inpainting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7134–7143.
  16. W. Mao, M. Liu, M. Salzmann, and H. Li, “Learning trajectory dependencies for human motion prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9489–9497.
  17. P. Ghosh, J. Song, E. Aksan, and O. Hilliges, “Learning human motion models for long-term predictions,” in 2017 International Conference on 3D Vision (3DV).   IEEE, 2017, pp. 458–466.
  18. K. Darvish, S. Ivaldi, and D. Pucci, “Simultaneous action recognition and human whole-body motion and dynamics prediction from wearable sensors,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).   IEEE, 2022, pp. 488–495.
  19. D. M. Sortino, L. Rapetti, E. Valli, and D. Pucci, “Towards a real-world application of wearable sensors for musculoskeletal disorders prevention: the ifeel wired suit,” in 2023 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2023.
  20. C. Latella, S. Traversaro, D. Ferigo, Y. Tirupachuri, L. Rapetti, F. J. Andrade Chavez, F. Nori, and D. Pucci, “Simultaneous floating-base estimation of human kinematics and joint torques,” Sensors, vol. 19, no. 12, p. 2794, 2019.
  21. L. Rapetti, Y. Tirupachuri, K. Darvish, S. Dafarra, G. Nava, C. Latella, and D. Pucci, “Model-based real-time motion tracking using dynamical inverse kinematics,” Algorithms, vol. 13, no. 10, p. 266, 2020.
  22. P. Ramadoss, L. Rapetti, Y. Tirupachuri, R. Grieco, G. Milani, E. Valli, S. Dafarra, S. Traversaro, and D. Pucci, “Whole-body human kinematics estimation using dynamical inverse kinematics and contact-aided lie group kalman filter,” arXiv preprint arXiv:2205.07835, 2022.
  23. G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot platform,” International Journal of Advanced Robotic Systems, vol. 3, no. 1, p. 8, 2006.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.