Quantum Computation and Quantum Simulation with Ultracold Molecules (2401.05086v1)
Abstract: Ultracold molecules confined in optical lattices or tweezer traps can be used to process quantum information and simulate the behaviour of many-body quantum systems. Molecules offer several advantages for these applications. They have a large set of stable states with strong transitions between them and long coherence times. They can be prepared in a chosen state with high fidelity, and the state populations can be measured efficiently. They have controllable long-range dipole-dipole interactions that can be used to entangle pairs of molecules and generate interesting many-body states. We review the advances that have been made and the challenges still to overcome, and describe the new ideas that will unlock the full potential of the field.
- J. W. Park, S. A. Will, and M. W. Zwierlein, Ultracold dipolar gas of Fermionic 2323{}^{23}start_FLOATSUPERSCRIPT 23 end_FLOATSUPERSCRIPTNa4040{}^{40}start_FLOATSUPERSCRIPT 40 end_FLOATSUPERSCRIPTK molecules in their absolute ground state, Phys. Rev. Lett. 114, 205302 (2015).
- I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nature Physics 8, 267 (2012).
- A. M. Kaufman and K.-K. Ni, Quantum science with optical tweezer arrays of ultracold atoms and molecules, Nature Physics 17, 1324 (2021).
- M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
- A. Browaeys and T. Lahaye, Many-body physics with individually controlled rydberg atoms, Nature Physics 16, 132 (2020).
- R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10, 4079 (2008).
- G. Quéméner and P. S. Julienne, Ultracold molecules under control!, Chemical Reviews 112, 4949 (2012).
- D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88, 067901 (2002).
- M. L. Wall, K. R. A. Hazzard, and A. M. Rey, Quantum magnetism with ultracold molecules, in From Atomic to Mesoscale (World Scientific, 2015) pp. 3–37.
- J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357, 1002 (2017).
- C. P. Koch, M. Lemeshko, and D. Sugny, Quantum control of molecular rotation, Rev. Mod. Phys. 91, 035005 (2019).
- T. P. Softley, Cold and ultracold molecules in the twenties, Proceedings of the Royal Society A 479, 20220806 (2023).
- J. M. Brown and A. Carrington, Rotational spectroscopy of diatomic molecules (Cambridge university press, 2003).
- A. Auerbach, Interacting electrons and quantum magnetism (Springer Science & Business Media, 1998).
- S. Sachdev, Quantum magnetism and criticality, Nature Physics 4, 173 (2008).
- M. Žnidarič, Spin transport in a one-dimensional anisotropic heisenberg model, Physical Review Letters 106, 220601 (2011).
- M. Ljubotina, M. Žnidarič, and T. Prosen, Kardar-parisi-zhang physics in the quantum heisenberg magnet, Physical review letters 122, 210602 (2019).
- S. Gopalakrishnan and R. Vasseur, Kinetic theory of spin diffusion and superdiffusion in x x z spin chains, Physical review letters 122, 127202 (2019).
- A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
- A. V. Gorshkov, K. R. A. Hazzard, and A. M. Rey, Kitaev honeycomb and other exotic spin models with polar molecules, Molecular Physics 111, 1908 (2013).
- T. Ozawa and H. M. Price, Topological quantum matter in synthetic dimensions, Nature Reviews Physics 1, 349 (2019).
- B. Sundar, B. Gadway, and K. R. A. Hazzard, Synthetic dimensions in ultracold polar molecules, Scientific Reports 8, 3422 (2018).
- K. R. A. Hazzard and B. Gadway, Synthetic dimensions, Physics Today 76, 62 (2023).
- A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nature Physics 2, 341 (2006).
- G. K. Brennen, A. Micheli, and P. Zoller, Designing spin-1 lattice models using polar molecules, New Journal of Physics 9, 138 (2007).
- M. L. González-Martínez, J. L. Bohn, and G. Quéméner, Adimensional theory of shielding in ultracold collisions of dipolar rotors, Physical Review A 96, 032718 (2017).
- T. Karman and J. M. Hutson, Microwave shielding of ultracold polar molecules, Physical review letters 121, 163401 (2018a).
- L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Physical Review Letters 121, 163402 (2018).
- P. Fazekas, Lecture notes on electron correlation and magnetism, Vol. 5 (World scientific, 1999).
- K. A. Kuns, A. M. Rey, and A. V. Gorshkov, d𝑑ditalic_d-wave superfluidity in optical lattices of ultracold polar molecules, Phys. Rev. A 84, 063639 (2011).
- N. R. Cooper and G. V. Shlyapnikov, Stable topological superfluid phase of ultracold polar fermionic molecules, Phys. Rev. Lett. 103, 155302 (2009).
- Z. Wu, J. K. Block, and G. M. Bruun, Liquid crystal phases of two-dimensional dipolar gases and berezinskii-kosterlitz-thouless melting, Scientific Reports 6, 19038 (2016).
- P. Rabl and P. Zoller, Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing, Physical Review A 76, 042308 (2007).
- S. Kotochigova and D. DeMille, Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic molecules, Phys. Rev. A 82, 063421 (2010).
- Q. Zhou and T.-L. Ho, Universal thermometry for quantum simulation, Physical Review Letters 106, 225301 (2011).
- R. Trivedi, A. F. Rubio, and J. I. Cirac, Quantum advantage and stability to errors in analogue quantum simulators (2022), arXiv:2212.04924 .
- J. Ye, H. J. Kimble, and H. Katori, Quantum state engineering and precision metrology using state-insensitive light traps, Science 320, 1734 (2008).
- A. Derevianko and H. Katori, Colloquium: Physics of optical lattice clocks, Rev. Mod. Phys. 83, 331 (2011).
- S. Kotochigova and E. Tiesinga, Controlling polar molecules in optical lattices, Phys. Rev. A 73, 041405 (2006).
- T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100, 043201 (2008).
- Q. Guan, S. L. Cornish, and S. Kotochigova, Magic conditions for multiple rotational states of bialkali molecules in optical lattices, Phys. Rev. A 103, 043311 (2021).
- C. M. Holland, Y. Lu, and L. W. Cheuk, On-demand entanglement of molecules in a reconfigurable optical tweezer array, Science 382, 1143 (2023).
- S. F. Yelin, K. Kirby, and R. Côté, Schemes for robust quantum computation with polar molecules, Phys. Rev. A 74, 050301 (2006).
- K.-K. Ni, T. Rosenband, and D. D. Grimes, Dipolar exchange quantum logic gate with polar molecules, Chemical Science 9, 6830 (2018).
- L. Caldwell and M. R. Tarbutt, Enhancing dipolar interactions between molecules using state-dependent optical tweezer traps, Phys. Rev. Lett. 125, 243201 (2020a).
- L. Caldwell and M. R. Tarbutt, Sideband cooling of molecules in optical traps, Phys. Rev. Res. 2, 013251 (2020b).
- M. Mayle, B. P. Ruzic, and J. L. Bohn, Statistical aspects of ultracold resonant scattering, Phys. Rev. A 85, 062712 (2012).
- A. V. Avdeenkov, M. Kajita, and J. L. Bohn, Suppression of inelastic collisions of polar Σ1superscriptΣ1{}^{1}\Sigmastart_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT roman_Σ state molecules in an electrostatic field, Phys. Rev. A 73, 022707 (2006).
- T. Karman and J. M. Hutson, Microwave shielding of ultracold polar molecules, Phys. Rev. Lett. 121, 163401 (2018b).
- L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Phys. Rev. Lett. 121, 163402 (2018).
- C. Zhang and M. Tarbutt, Quantum computation in a hybrid array of molecules and Rydberg atoms, PRX Quantum 3, 030340 (2022).
- V. V. Albert, J. P. Covey, and J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020).
- M. Zeppenfeld, Nondestructive detection of polar molecules via rydberg atoms, Europhysics Letters 118, 13002 (2017).
- T. A. Isaev and R. Berger, Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts, Phys. Rev. Lett. 116, 063006 (2016).
- G. Quéméner, J. L. Bohn, and J. F. E. Croft, Electroassociation of ultracold dipolar molecules into tetramer field-linked states, Phys. Rev. Lett. 131, 043402 (2023).
- Z.-Y. Zhang and J.-M. Liu, Quantum correlations and coherence of polar symmetric top molecules in pendular states, Scientific Reports 7, 17822 (2017).
- M. L. Wall, K. Maeda, and L. D. Carr, Simulating quantum magnets with symmetric top molecules, Annalen der Physik 525, 845 (2013).
- M. L. Wall, K. Maeda, and L. D. Carr, Realizing unconventional quantum magnetism with symmetric top molecules, New Journal of Physics 17, 025001 (2015b).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.