Papers
Topics
Authors
Recent
2000 character limit reached

Spacetime Foam and Solution of the Cosmological Constant Problem (2401.04528v1)

Published 9 Jan 2024 in gr-qc and hep-th

Abstract: The cosmological constant problem is a fundamental issue that has puzzled researchers in the fields of theoretical physics and cosmology for a long time. It arises from the discrepancy between the observed value of the cosmological constant and the value predicted by quantum field theory. A new spacetime model based on nonassociative geometry and statistical physics of complex networks offers a fresh perspective on the problem. Our research indicates that spacetime topology plays a crucial role in solving the cosmological constant problem and addressing the dark energy issue. We discovered that spacetime foam significantly impacts the effective cosmological constant, which is determined by the density of topological geons. Furthermore, we demonstrate that the source of dark energy is topological geons

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Y. B. Zel’dovich, Soviet Physics Uspekhi 11, 381 (1968).
  2. Y. B. Zel’dovich, JETP Letters 6, 316 (1967).
  3. S. Weinberg, “The cosmological constant problems (talk given at Dark Matter 2000, february, 2000),”  (2000), arXiv:astro-ph/0005265 [astro-ph] .
  4. A. D. Dolgov, “The problem of vacuum energy and cosmology (a lecture presented at the 4th colloque cosmologie, Paris, june, 1997),”  (1997), arXiv:astro-ph/9708045 [astro-ph] .
  5. S. M. Carroll, Living Reviews in Relativity 4, 1 (2001).
  6. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003a).
  7. T. Padmanabhan, Physics Reports 380, 235 (2003).
  8. S. Rugh and H. Zinkernagel,  Studies in History and Philosophy of Modern Physics 33, 663 (2002).
  9. V. Sahni and A. Starobinsky, International Journal of Modern Physics D 09, 373 (2000).
  10. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003b).
  11. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
  12. S. Weinberg, Phys. Rev. Lett. 59, 2607 (1987).
  13. B. J. Carr and M. J. Rees, Nature 278, 605 (1979).
  14. F. Wilczek, Phys. Rev. Lett. 48, 1146 (1982).
  15. B. C. Ed., UNIVERSE OR MULTIVERSE? (Cambridge University Press, New York, 2007).
  16. J. Butterfield and C. Isham, in Physics meets Philosophy at the Planck Scale, edited by C. Callender and N. Huggett (Cambridge University Press, Cambridge, 2000).
  17. J. Ambjørn, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, edited by D. Oriti (Cambridge University Press, New York, 2009).
  18. R. Loll, Living Reviews in Relativity 1, 13 (1998).
  19. B. Swingle, Annual Review of Condensed Matter Physics 9, 345 (2018).
  20. T. Padmanabhan, Journal of Physics: Conference Series 701, 012018 (2016).
  21. F. Dowker, Annals of the New York Academy of Sciences 1326, 18 (2014).
  22. T. Padmanabhan, Entropy 17, 7420 (2015).
  23. W. Pauli, Pauli Lectures on Physics, Volume VI: Selected Topics in Field Quantization, Pauli Lectures on Physics delivered in 1950–1951 at the Swiss Federal Institute of Technology (Dover Publications, 2000).
  24. J. A. Wheeler, Annals of Physics 2, 604 (1957).
  25. W. J. e. DeWitt C.M., “Superspace and the nature of quantum geometrodynamics,” in Battelle Rencontres: 1967 lectures in mathematics and physics (Benjamin, 1968).
  26. A. Nesterov, Universe 9, 266 (2023).
  27. A. I. Nesterov and L. V. Sabinin, Comment. Math. Univ. Carolin. 41,2, 347 (2000a).
  28. L. V. Sabinin, Smooth quasigroups and loops (Kluwer Academic Publishers, Dordrecht, 1999).
  29. A. I. Nesterov and L. V. Sabinin, Phys. Rev. D 62, 081501 (2000b).
  30. L. Sabinin, International Journal of Theoretical Physics 40, 351 (2001).
  31. A. I. Nesterov and L. V. Sabinin, IJGMMP 3, 1481 (2006).
  32. A. Nesterov, “Gravity within the Framework of Nonassociative Geometry,” in Non-Associative Algebra and Its Applications, edited by I. Shestakov. L. Sabinin, L. Sbitneva (Chapman and Hall/CRC, 2006) pp. 299–311.
  33. A. I. Nesterov and H. Mata, Frontiers in Physics 7, 32 (2019).
  34. A. I. Nesterov and P. H. Mata Villafuerte, Phys. Rev. E 101, 032302 (2020).
  35. S. Hawking, Nuclear Physics B 144, 349 (1978).
  36. J. Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004).
  37. T. Squartini and D. Garlaschelli, Maximum-Entropy Networks: Pattern Detection, Network Reconstruction and Graph Combinatorics (Springer International Publishing, Cham, 2017).
  38. D. Garlaschelli and M. I. Loffredo, Phys. Rev. E 78, 015101 (2008).
  39. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
  40. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
  41. S. Klaus, Frontiers of Mathematics in China 11, 1345 (2016).
  42. Q. Wang, Phys. Rev. Lett. 125, 051301 (2020).
  43. S. Carlip, Phys. Rev. Lett. 123, 131302 (2019).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.