A dynamic programming interpretation of quantum mechanics (2401.04085v1)
Abstract: We introduce a transformation of the quantum phase $S'=S+\frac{\hbar}{2}\log\rho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of stochastic particles. We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as stochastic Hamilton-Jacobi-Bellman equations. The system of equations provide a local description of quantum mechanics, which is enabled by the inherently retrocausal nature of stochastic Hamilton-Jacobi-Bellman equations. We also investigate the stochastic transformation of the classical system, where is it shown that quantum mechanics with the quantum potential reduced by a factor of $\frac{1}{2}$ has a classical representation, which may have interesting implications. Finally, we discuss the notion of a subsystem correspondence principle, which constrains the ontology of the total quantum system.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.