A Hybrid Quantum Computing Pipeline for Real World Drug Discovery (2401.03759v3)
Abstract: Quantum computing, with its superior computational capabilities compared to classical approaches, holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. However, the application of quantum computing for drug discovery has primarily been limited to proof-of-concept studies, which often fail to capture the intricacies of real-world drug development challenges. In this study, we diverge from conventional investigations by developing \rev{a hybrid} quantum computing pipeline tailored to address genuine drug design problems. Our approach underscores the application of quantum computation in drug discovery and propels it towards more scalable system. We specifically construct our versatile quantum computing pipeline to address two critical tasks in drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered in drug design, especially the covalent bonding issue present in both of the case studies, thereby transitioning from theoretical models to tangible applications. Our results demonstrate the potential of a quantum computing pipeline for integration into real world drug design workflows.
- J. D. Durrant and J. A. McCammon, Molecular dynamics simulations and drug discovery, BMC Bio. 9, 1 (2011).
- R. Wong and W.-L. Chang, Fast quantum algorithm for protein structure prediction in hydrophobic-hydrophilic model, J. Parallel Distrib. Comput. 164, 178 (2022).
- W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- C. Weng, L. Shen, and W. H. Ang, Harnessing endogenous formate for antibacterial prodrug activation by in cellulo ruthenium-mediated transfer hydrogenation reaction, Angew. Chem. Int. Ed. 59, 9314 (2020).
- S. J. Ferrara and T. S. Scanlan, A CNS-targeting prodrug strategy for nuclear receptor modulators, J. Med. Chem. 63, 9742 (2020).
- X. Xia, Y. Zhou, and H. Gao, Prodrug strategy for enhanced therapy of central nervous system disease, Chem. Commun. 57, 8842 (2021).
- K. Kowalski and N. P. Bauman, Quantum flow algorithms for simulating many-body systems on quantum computers, Phys. Rev. Lett. 131, 200601 (2023).
- J. Tomasi, B. Mennucci, and R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105, 2999 (2005).
- S. Miertuš, E. Scrocco, and J. Tomasi, Electrostatic interaction of a solute with a continuum. a direct utilizaion of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55, 117 (1981).
- A. Klamt and G. Schüürmann, COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc. Perkin Trans. 2 , 799 (1993).
- E. Cancès, Y. Maday, and B. Stamm, Domain decomposition for implicit solvation models, J. Chem. Phys. 139, 054111 (2013).
- T. Helgaker and P. Jørgensen, Analytical calculation of geometrical derivatives in molecular electronic structure theory, Adv. Quantum Chem. 19, 183 (1988).
- P. R. Taylor, Analytical MCSCF energy gradients: Treatment of symmetry and CASSCF applications to propadienone, J. Comput. Chem. 5, 589 (1984).
- P. Pulay, Direct use of the gradient for investigating molecular energy surfaces, in Applications of electronic structure theory (Springer, 1977) pp. 153–185.
- B. Choy and D. J. Wales, Molecular energy landscapes of hardware-efficient ansatz in quantum computing, J. Chem. Theory Comput. 19, 1197 (2023).
- P. Eastman and V. S. Pande, OpenMM: A hardware independent framework for molecular simulations, Comput. Sci. Eng. 12, 34 (2015).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.