Papers
Topics
Authors
Recent
2000 character limit reached

Lessons Learned: Reproducibility, Replicability, and When to Stop (2401.03736v2)

Published 8 Jan 2024 in cs.LG and physics.ao-ph

Abstract: While extensive guidance exists for ensuring the reproducibility of one's own study, there is little discussion regarding the reproduction and replication of external studies within one's own research. To initiate this discussion, drawing lessons from our experience reproducing an operational product for predicting tropical cyclogenesis, we present a two-dimensional framework to offer guidance on reproduction and replication. Our framework, representing model fitting on one axis and its use in inference on the other, builds upon three key aspects: the dataset, the metrics, and the model itself. By assessing the trajectories of our studies on this 2D plane, we can better inform the claims made using our research. Additionally, we use this framework to contextualize the utility of benchmark datasets in the atmospheric sciences. Our two-dimensional framework provides a tool for researchers, especially early career researchers, to incorporate prior work in their own research and to inform the claims they can make in this context.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.