Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Test of a Conjecture of Cardy (2401.03600v4)

Published 7 Jan 2024 in math.PR

Abstract: In reference to Werner's measure on self-avoiding loops on Riemann surfaces, Cardy conjectured a formula for the measure of all homotopically nontrivial loops in a finite type annular region with modular parameter $\rho$. Ang, Remy and Sun have announced a proof of this conjecture using random conformal geometry. Cardy's formula implies that the measure of the set of homotopically nontrivial loops in the punctured plane which intersect $S1$ equals $\frac{2\pi}{\sqrt{3}}$. This set is the disjoint union of the set of loops which avoid a ray from the unit circle to infinity and its complement. There is an inclusion/exclusion sum which, in a limit, calculates the measure of the set of loops which avoid a ray. Each term in the sum involves finding the transfinite diameter of a slit domain. This is numerically accessible using the remarkable Schwarz-Christoffel package developed by Driscoll and Trefethen. Our calculations suggest this sum is around $\pi$, consistent with Cardy's formula.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: