Papers
Topics
Authors
Recent
2000 character limit reached

Dimensional reduction of gradient-like stochastic systems with multiplicative noise via Fokker-Planck diffusion maps (2401.03095v1)

Published 5 Jan 2024 in q-bio.QM, physics.bio-ph, q-bio.CB, and q-bio.GN

Abstract: Dimensional reduction techniques have long been used to visualize the structure and geometry of high dimensional data. However, most widely used techniques are difficult to interpret due to nonlinearities and opaque optimization processes. Here we present a specific graph based construction for dimensionally reducing continuous stochastic systems with multiplicative noise moving under the influence of a potential. To achieve this, we present a specific graph construction which generates the Fokker-Planck equation of the stochastic system in the continuum limit. The eigenvectors and eigenvalues of the normalized graph Laplacian are used as a basis for the dimensional reduction and yield a low dimensional representation of the dynamics which can be used for downstream analysis such as spectral clustering. We focus on the use case of single cell RNA sequencing data and show how current diffusion map implementations popular in the single cell literature fit into this framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. G. Gorin and L. Pachter, Distinguishing biophysical stochasticity from technical noise in single-cell rna sequencing using monod 10.1101/2022.06.11.495771 (2022).
  2. G. Gorin, J. J. Vastola, and L. Pachter, Studying stochastic systems biology of the cell with single-cell genomics data 10.1101/2023.05.17.541250 (2023).
  3. R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis 21, 5 (2006).
  4. D. Ting, L. Huang, and M. Jordan, An analysis of the convergence of graph laplacians 10.48550/ARXIV.1101.5435 (2011).
  5. S. Huang, The molecular and mathematical basis of waddington's epigenetic landscape: A framework for post-darwinian biology?, BioEssays 34, 149 (2011).
  6. L. Haghverdi, F. Buettner, and F. J. Theis, Diffusion maps for high-dimensional single-cell analysis of differentiation data, Bioinformatics 31, 2989 (2015).
  7. F. A. Wolf, P. Angerer, and F. J. Theis, SCANPY: large-scale single-cell gene expression data analysis, Genome Biology 19, 10.1186/s13059-017-1382-0 (2018).
  8. N. G. van Kampen, Itô versus stratonovich, Journal of Statistical Physics 24, 175 (1981).
  9. M. A. Coomer, L. Ham, and M. P. Stumpf, Noise distorts the epigenetic landscape and shapes cell-fate decisions, Cell Systems 13, 83 (2022).
  10. D. O. Loftsgaarden and C. P. Quesenberry, A nonparametric estimate of a multivariate density function, The Annals of Mathematical Statistics 36, 1049–1051 (1965).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.