Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite sample performance of optimal treatment rule estimators with right-censored outcomes (2401.03084v2)

Published 5 Jan 2024 in stat.ME

Abstract: Patient care may be improved by recommending treatments based on patient characteristics when there is treatment effect heterogeneity. Recently, there has been a great deal of attention focused on the estimation of optimal treatment rules that maximize expected outcomes. However, there has been comparatively less attention given to settings where the outcome is right-censored, especially with regard to the practical use of estimators. In this study, simulations were undertaken to assess the finite-sample performance of estimators for optimal treatment rules and estimators for the expected outcome under treatment rules. The simulations were motivated by the common setting in biomedical and public health research where the data is observational, survival times may be right-censored, and there is interest in estimating baseline treatment decisions to maximize survival probability. A variety of outcome regression and direct search estimation methods were compared for optimal treatment rule estimation across a range of simulation scenarios. Methods that flexibly model the outcome performed comparatively well, including in settings where the treatment rule was non-linear. R code to reproduce this study's results are available on Github.

Summary

We haven't generated a summary for this paper yet.