Papers
Topics
Authors
Recent
Search
2000 character limit reached

Thermal transport of confined water molecules in quasi-one-dimensional nanotubes

Published 5 Jan 2024 in cond-mat.soft, cond-mat.mes-hall, and physics.comp-ph | (2401.02595v2)

Abstract: Dimensions and molecular structure play pivotal roles in the principle of heat conduction. The dimensional characteristics of solution within nanoscale systems depend on the degrees of confinement. However, the influence of such variations on heat transfer remains inadequately understood. Here, we perform quasi-one-dimensional non-equilibrium molecular dynamics simulations to calculate the thermal conductivity of water molecules confined in carbon nanotubes. The structure of water molecules is determined depending on the nanotube radius, forming a single-file, a single-layer, and a double-layer structure, corresponding to an increasing radius order. We reveal that the thermal conductivity of liquid water has a sublinear dependency on nanotube length exclusively when water molecules form a single file. Stronger confinement leads to behavioral and structural characteristics closely resembling a one-dimensional nature. Moreover, single-layer-structured water molecules exhibit enhanced thermal conductivity. We elucidate that this is due to the increase in the local water density and the absence of transitions to another layer, which typically occurs in systems with double-layer water structures within relatively large radius nanotubes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. B. Li and J. Wang, Phys. Rev. Lett. 91, 044301 (2003).
  2. A. Dhar, Adv. Phys. 57, 457 (2008).
  3. H. Van Beijeren, Phys. Rev. Lett. 108, 180601 (2012).
  4. J. Quastel and H. Spohn, J. Stat. Phys. 160, 965 (2015).
  5. S.-N. Li and B.-Y. Cao, Energy Environ. 11, 40 (2020).
  6. T. Gueudré and P. Le Doussal, Europhys. Lett. 100, 26006 (2012).
  7. C. B. Mendl and H. Spohn, Phys. Rev. Lett. 111, 230601 (2013).
  8. J.-S. Wang and B. Li, Phys. Rev. Lett. 92, 074302 (2004).
  9. A. Henry and G. Chen, Phys. Rev. Lett. 101, 235502 (2008).
  10. R. Mohammad and G. Hojat, Theor. Comput. Fluid Dyn. 34, 177 (2020).
  11. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
  12. I. Hanasaki and A. Nakatani, J. Chem. Phys. 124 (2006).
  13. Y. Liu and Q. Wang, Phys. Rev. B 72, 085420 (2005).
  14. A. Cao and J. Qu, J. Appl. Phys. 112 (2012).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.