Papers
Topics
Authors
Recent
2000 character limit reached

Execution time budget assignment for mixed criticality systems (2401.02431v2)

Published 14 Nov 2023 in cs.PF, cs.DC, and stat.ML

Abstract: In this paper we propose to quantify execution time variability of programs using statistical dispersion parameters. We show how the execution time variability can be exploited in mixed criticality real-time systems. We propose a heuristic to compute the execution time budget to be allocated to each low criticality real-time task according to its execution time variability. We show using experiments and simulations that the proposed heuristic reduces the probability of exceeding the allocated budget compared to algorithms which do not take into account the execution time variability parameter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance,” in 28th IEEE Real-Time Systems Symposium (RTSS 2007), Tucson, Arizona, USA, pp. 239–243.
  2. A. Burns and R. I. Davis, “A survey of research into mixed criticality systems,” ACM Comput. Surv., vol. 50, no. 6, pp. 82:1–82:37, 2018.
  3. C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan, “Variability in the execution of multimedia applications and implications for architecture,” SIGARCH Comput. Archit. News, vol. 29, no. 2, p. 254–265, may 2001.
  4. W. Koch, R. Mancuso, and A. Bestavros, “Neuroflight: Next generation flight control firmware,” CoRR, vol. abs/1901.06553, 2019.
  5. V. Nélis, P. M. Yomsi, and L. M. Pinho, “The Variability of Application Execution Times on a Multi-Core Platform,” in 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016), M. Schoeberl, Ed., vol. 55, Dagstuhl, Germany.
  6. J. Bin, “Controlling execution time variability using cots for safety-critical systems,” Thesis, Université Paris Sud - Paris XI, Jul. 2014.
  7. R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing analysis techniques for real-time systems,” Leibniz Trans. Embed. Syst., vol. 6, no. 1, pp. 03:1–03:60, 2019.
  8. M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla, “Timing of autonomous driving software: Problem analysis and prospects for future solutions,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020, pp. 267–280.
  9. F. Reghenzani, G. Massari, and W. Fornaciari, “Timing predictability in high-performance computing with probabilistic real-time,” IEEE Access, vol. 8, pp. 208 566–208 582, 2020.
  10. A. Burns and S. Baruah, “Towards a more practical model for mixed criticality systems,” in Proc. WMC, RTSS, 2013, pp. 1–6.
  11. S. K. Baruah, A. Burns, and Z. Guo, “Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors,” in 28th Euromicro Conference on Real-Time Systems, (ECRTS) 2016, Toulouse, France, pp. 131–138.
  12. X. Gu and A. Easwaran, “Dynamic budget management with service guarantees for mixed-criticality systems,” in IEEE Real-Time Systems Symposium, (RTSS), Porto, Portugal, 2016, pp. 47–56.
  13. J. Singh, L. Santinelli, F. Reghenzani, K. Bletsas, D. Doose, and Z. Guo, “Mixed criticality scheduling of probabilistic real-time systems,” in Dependable Software Engineering. Theories, Tools, and Applications - 5th International Symposium, (SETTA) 2019, Shanghai, China, 2019, N. Guan, J. Katoen, and J. Sun, Eds., vol. 11951, pp. 89–105.
  14. Y. Abdeddaïm and D. Maxim, “Probabilistic schedulability analysis for fixed priority mixed criticality real-time systems,” in Design, Automation & Test in Europe Conference & Exhibition, (DATE), Lausanne, Switzerland, 2017, D. Atienza and G. D. Natale, Eds., pp. 596–601.
  15. S. Draskovic, R. Ahmed, P. Huang, and L. Thiele, “Schedulability of probabilistic mixed-criticality systems,” Real Time Syst., vol. 57, no. 4, pp. 397–442, 2021.
  16. N. I. of Standards and Technology, Measures of Skewness and Kurtosis.
  17. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen WCET benchmarks – past, present and future,” B. Lisper, Ed.   Brussels, Belgium: OCG, Jul. 2010, pp. 137–147.
  18. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new scheduling theory to static priority pre-emptive scheduling,” Software engineering journal, vol. 8, no. 5, pp. 284–292, 1993.
  19. P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis of multiprocessor tasksets,” in 1st International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010), pp. 6–11.
  20. R. Barry et al., “Freertos,” Internet, Oct, vol. 4, 2008.
  21. R. Kase, “Efficient scheduling library for freertos,” 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:64508990
  22. H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener, “Taclebench: A benchmark collection to support worst-case execution time research,” in Workshop on Worst-Case Execution Time Analysis, (WCET), 2016, France, M. Schoeberl, Ed., vol. 55, pp. 2:1–2:10.
  23. M. Bechtel and H. Yun, “Denial-of-service attacks on shared cache in multicore: Analysis and prevention,” in 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.