Papers
Topics
Authors
Recent
2000 character limit reached

Simulation-Based Inference with Quantile Regression

Published 4 Jan 2024 in stat.ML, cs.LG, astro-ph.CO, and astro-ph.IM | (2401.02413v2)

Abstract: We present Neural Quantile Estimation (NQE), a novel Simulation-Based Inference (SBI) method based on conditional quantile regression. NQE autoregressively learns individual one dimensional quantiles for each posterior dimension, conditioned on the data and previous posterior dimensions. Posterior samples are obtained by interpolating the predicted quantiles using monotonic cubic Hermite spline, with specific treatment for the tail behavior and multi-modal distributions. We introduce an alternative definition for the Bayesian credible region using the local Cumulative Density Function (CDF), offering substantially faster evaluation than the traditional Highest Posterior Density Region (HPDR). In case of limited simulation budget and/or known model misspecification, a post-processing calibration step can be integrated into NQE to ensure the unbiasedness of the posterior estimation with negligible additional computational cost. We demonstrate that NQE achieves state-of-the-art performance on a variety of benchmark problems.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

  1. He Jia 

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.