Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise A posteriori error control of quadratic Discontinuous Galerkin Methods for the unilateral contact problem (2401.02176v1)

Published 4 Jan 2024 in math.NA and cs.NA

Abstract: An a posteriori error bound for the pointwise error of the quadratic discontinuous Galerkin method for the unilateral contact problem on polygonal domain is presented. The pointwise a posteriori error analysis is based on the direct use of a priori estimates of the Green's matrix for the divergence type operators and the suitable construction of the discrete contact force density $\b{\sigma}_h$ and barrier functions for the continuous solution. Several numerical experiments (in two dimension) are presented to illustrate the reliability and efficiency properties of the proposed aposteriori error estimator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Rüdiger Verfürth. A review of a posteriori error estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner, Citeseer, 1996.
  2. A posteriori error estimation in finite element analysis. Computer methods in applied mechanics and engineering, 142(1-2):1–88, 1997.
  3. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(6):2374–2399, 2003.
  4. Ricardo H Nochetto. Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Mathematics of Computation, 64(209):1–22, 1995.
  5. Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 50(5):2159–2181, 2012.
  6. Maximum norm error estimators for three-dimensional elliptic problems. SIAM Journal on Numerical Analysis, 37(2):683–700, 1999.
  7. A posteriori error estimator and error control for contact problems. Mathematics of Computation, 78(267):1237–1267, 2009.
  8. An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numerische Mathematik, 130(1):151–197, 2015.
  9. A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. Journal of Computational and Applied Mathematics, 292:257–278, 2016.
  10. Mirjam Walloth. A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. Applied Numerical Mathematics, 135:276–296, 2019.
  11. C Baiocchi. Estimations d’erreur dans L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT pour les inéquations à obstacle. In Mathematical Aspects of Finite Element Methods, pages 27–34. Springer, 1977.
  12. Pointwise a posteriori error analysis of a finite element method for the Signorini problem. Journal of Scientific Computing, 91(2):1–34, 2022.
  13. Pointwise a posteriori error control of discontinuous Galerkin methods for unilateral contact problems. Computational Methods in Applied Mathematics, 23(1):189–217, 2023.
  14. Adaptive Discontinuous Galerkin finite element method for the unilateral contact problem. Communicated.
  15. Supremum norm a posteriori error control of qua- dratic finite element method for the Signorini problem. Communicated.
  16. Adaptive quadratic Discontinuous Galerkin finite element method for the unilateral contact problem. Communicated.
  17. Sobolev Spaces. 2nd Edn. Elsevier Science, 2003.
  18. Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
  19. S. Kesavan. Topics in functional analysis and applications. John Wiley & Sons, 1989.
  20. On Trace Theorems for Sobolev Spaces. Le Matematiche, 75(1):137–165, 2019.
  21. Srinivasan Kesavan. Topics in functional analysis and applications. New Age International, 1989.
  22. Discontinuous Galerkin methods for solving the Signorini problem. IMA journal of numerical analysis, 31(4):1754–1772, 2011.
  23. The mathematical theory of finite element methods, volume 15. Springer Science & Business Media, 2007.
  24. Susanne C. Brenner. Korn’s inequalities for piecewise h1 vector fields. Math. Comput., 73:1067–1087, 2003.
  25. Estimates for Green’s matrices of elliptic systems by Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT theory. Manuscripta Mathematica, 88(1):261–273, 1995.
  26. The Green’s function estimates for strongly elliptic systems of second order. Manuscripta Mathematica, 124(2):139–172, 2007.
  27. Pointwise a posteriori error analysis of quadratic finite element method for the elliptic obstacle problem. Journal of Computational and Applied Mathematics, 412:114364, 2022.
  28. Pointwise a posteriori error estimates for monotone semi-linear equations. Numerische Mathematik, 104(4):515–538, 2006.
  29. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Applied Numerical Mathematics, 54(3-4):555–576, 2005.
  30. Efficient implementation of adaptive p1-fem in matlab. 2011.

Summary

We haven't generated a summary for this paper yet.