Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadratic Discontinuous Galerkin methods for Unilateral Contact Problem (2401.02120v1)

Published 4 Jan 2024 in math.NA, cs.NA, and math.AP

Abstract: In this article, we employ discontinuous Galerkin (DG) methods for the finite element approximation of the frictionless unilateral contact problem using quadratic finite elements over simplicial triangulation. We first establish an optimal \textit{a priori} error estimates under the appropriate regularity assumption on the exact solution $\b{u}$. Further, we analyze \textit{a posteriori} error estimates in the DG norm wherein, the reliability and efficiency of the proposed \textit{a posteriori} error estimator is addressed. The suitable construction of discrete Lagrange multiplier $\b{\lambda_h}$ and some intermediate operators play a key role in developing \textit{a posteriori} error analysis. Numerical results presented on uniform and adaptive meshes illustrate and confirm the theoretical findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000.
  2. D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742–760, 1982.
  3. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749–1779, 2002.
  4. Theoretical Numerical Analysis. A functional analysis framework. Third edition, Springer, 2009.
  5. L. Banz and E. P. Stephan. A posteriori error estimates of h⁢pℎ𝑝hpitalic_h italic_p-adaptive IPDG-FEM for elliptic obstacle problems. Appl. Numer. Math., 76:76–92, 2014.
  6. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math., 99:225–249, 2004.
  7. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: R. Decuypere, G. Dibelius (Eds.), Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 99–108, 1997.
  8. Z. Belhachmi and F. B. Belgacam. Quadratic Finite Element Approximation of the Signorini problem. Math. Comp., 72:83-104, 2001.
  9. R. E. Bird, W. M. Coombs and S. Giani. A posteriori discontinuous Galerkin error estimator for linear elasticity. Appl. Math. Comp., 344:78–96, 2019.
  10. A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Engrg., 195:1252–1274, 2006.
  11. S. C. Brenner. Korn’s inequalities for piecewise H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT vector fields. Math. Comp. 73:1067–1087, 2004.
  12. S. C. Brenner. Ponicaré-Friedrichs inequalities for piecewise H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT functions. SIAM J. Numer. Anal., 41:306–324, 2003.
  13. S. C. Brenner, L. Y. Sung and Y. Zhangy. Finite element methods for the displacement obstacle problem of clamped plates. Math. Comp., 81:1247–1262, 2012.
  14. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods ((((Third Edition)))). Springer-Verlag, New York, 2008.
  15. F. Brezzi, W. W. Hager and P. A. Raviart. Error estimates for the finite element solution of variational inequalities, Part I. Primal theory. Numer. Math., 28:431–443, 1977.
  16. Discontinuous Galerkin Approximations for elliptic problems. Numer. Met. PDE, 16:365–378, 2000.
  17. B Rivie´´𝑒\acute{e}over´ start_ARG italic_e end_ARGre, M. F. Wheeler and V. Girault. A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal., 39:902-931, 2001.
  18. R. Bustinza and F. J. Sayas. Error estimates for an LDG method applied to a Signorini type problems. J. Sci. Comput., 52:322–339, 2012.
  19. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal., 38:1676–1706, 2000.
  20. On the local discontinuous Galerkin method for linear elasticity. Math. Probl. Eng., 19:242–256, 2010.
  21. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
  22. Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Computer Science engineering, Vol. 11, Springer, New York, 2000.
  23. W. Dörlfer. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 33:1106–1124, 1996.
  24. G. Duvaut and J. L. Lions. Inequalities in Mechanics and Physics. Springer, Berlin, 1976.
  25. R. S. Falk. Error estimates for the approximation of a class of variational inequalities. Math. Comp., 28:963–971, 1974.
  26. G. Fichera. Problemi elastostatici con vincoli unilaterali:il problema di signorini con ambigue condizioni al contorno. Mem Accad Naz Lincei Ser, 8:91–140, 1964.
  27. Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem. Comput. Methods Appl. Math., 18:223–236, 2018.
  28. S. Gaddam, T. Gudi and K. Porwal. Two new approaches for solving elliptic obstacle problems using discontinuous Galerkin methods. BIT Numer. Math., 62:89–124, 2022.
  29. R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, Berlin, 2008.
  30. A remark on the a posteriori error analysis of discontinuous Galerkin methods for obstacle problem. Comput. Meth. Appl. Math., 14:71–87, 2014.
  31. An a posteriori error estimator for a class of discontinuous Galerkin methods for Signorini problem. J. Comp. Appl. Math., 292:257–278, 2016.
  32. A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comput., 83:579–602, 2014.
  33. A reliable residual based a posteriori error estimator for a quadratic finite element method for the elliptic obstacle problem. Comput. Meth. Appl. Math., 15:145-160, 2014.
  34. J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: Algorithms, Analysis, and Applications, Springer, New York, 2007.
  35. A posteriori error estimations of residual type for Signorini’s problem. Numer. Math., 101:523–549, 2005.
  36. Residual a posteriori error estimators for contact problems in elasticity. ESAIM:M2AN, 41:897–923, 2007.
  37. S. Hüeber, M. Mair and B. I. Wohlmuth. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. App. Num. Math., 54:555–576, 2005.
  38. R. Khandelwal, K. Porwal and T. Wadhawan. Adaptive quadratic finite element method for the unilateral contact problem (Submitted).
  39. N. Kikuchi and J. T. Oden. Contact Problem in Elasticity. SIAM, Philadelphia, 1988.
  40. An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia, 2000.
  41. R. Krause, A. Veeser and M. Walloth. An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Num. Math., 130:151–197, 2015.
  42. R. Nochetto, T. V. Petersdorff and C. S. Zhang. A posteriori error analysis for a class of integral equations and variational inequalities. Numer. Math., 116:519–552, 2010.
  43. D. Pietro, D. Antonio and A. Ern. Mathematical aspects of discontinuous Galerkin methods. Mathématiques and Appl., Springer, Berlin, 2012.
  44. W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
  45. B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, Philadelphia, 2008.
  46. A. Signorini. Questioni di elasticita non-linearizzata e semi-linearizzata. Rendiconti Di Matematica E Delle Sue Applicazioni, 18:95–39, 1959.
  47. A. Veeser. Efficient and Reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal., 39:146–167, 2001.
  48. R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. In Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 50: 67–83, 1994.
  49. R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, 1995.
  50. M. Walloth. A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. App. Num. Math., 135:276-296, 2019.
  51. L. H. Wang. On the quadratic finite element approximation to the obstacle problem. Numer. Math., 92:771-778, 2002.
  52. F. Wang, W. Han and X. Cheng. Discontinuous Galerkin methods for solving a quasi static contact problem. Numer. Math., 126:771–800, 2014.
  53. F. Wang, W. Han and X. Cheng. Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal., 48:708–733, 2010.
  54. F. Wang, W. Han and X. Cheng. Discontinuous Galerkin methods for solving Signorini problem. IMA J. Numer. Anal., 31:1754–1772, 2011.
  55. A posteriori error estimates for discontinuous Galerkin methods of obstacle problems. Nonlin. Anal. : Real World Appl., 22:664–679, 2015.
  56. A. Weiss and B. I. Wohlmuth. A posteriori error estimator and error control for contact problems. Math. Comp., 78:1237-1267, 2009.

Summary

We haven't generated a summary for this paper yet.