Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supremum norm A Posteriori Error control of Quadratic Finite Element Method for the Signorini problem (2401.02181v1)

Published 4 Jan 2024 in math.NA and cs.NA

Abstract: In this paper, we develop a new residual-based pointwise a posteriori error estimator of the quadratic finite element method for the Signorini problem. The supremum norm a posteriori error estimates enable us to locate the singularities locally to control the pointwise errors. In the analysis the discrete counterpart of contact force density is constructed suitably to exhibit the desired sign property. We employ a priori estimates for the standard Green's matrix for the divergence type operator and introduce the upper and lower barriers functions by appropriately modifying the discrete solution. Finally, we present numerical experiments that illustrate the excellent performance of the proposed error estimator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, 1988.
  2. Mirjam Walloth. Adaptive numerical simulation of contact problems: resolving local effects at the contact boundary in space and time. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn. 2012.
  3. Quadratic finite element methods for unilateral contact problems. Applied Numerical Mathematics, 41(3):401–421, 2002.
  4. Roland Glowinski. Lectures on numerical methods for non-linear variational problems. Springer Science & Business Media, 2008.
  5. D. Kinderlehrer. Remarks about Signorini’s problem in linear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8(4):605–645, 1981.
  6. L. A. Caffarelli. Further regularity for the Signorini problem. Comm. Partial Differential Equations, 4(9):1067–1075, 1979.
  7. Error estimates for the finite element solution of variational inequalities. Numerische Mathematik, 28(4):431–443, 1977.
  8. Error estimates for the approximation of some unilateral problems. RAIRO Analyse numérique, 11(2):197–208, 1977.
  9. Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
  10. Zakaria Belhachmi and F Belgacem. Quadratic finite element approximation of the Signorini problem. Mathematics of Computation, 72(241):83–104, 2003.
  11. Andreas Veeser. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM Journal on Numerical Analysis, 39(1):146–167, 2001.
  12. A posteriori error estimator and error control for contact problems. Mathematics of Computation, 78(267):1237–1267, 2009.
  13. An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numerische Mathematik, 130(1):151–197, 2015.
  14. A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. Journal of Computational and Applied Mathematics, 292:257–278, 2016.
  15. Mirjam Walloth. A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. Applied Numerical Mathematics, 135:276–296, 2019.
  16. Adaptive quadratic finite element method for the unilateral contact problem. Submitted.
  17. Ricardo H Nochetto. Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Mathematics of Computation, 64(209):1–22, 1995.
  18. Maximum norm error estimators for three-dimensional elliptic problems. SIAM Journal on Numerical Analysis, 37(2):683–700, 1999.
  19. Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 50(5):2159–2181, 2012.
  20. Joachim Nitsche. L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-convergence of finite element approximations. In Mathematical aspects of finite element methods, pages 261–274. Springer, 1977.
  21. C Baiocchi. Estimations d’erreur dans L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT pour les inéquations à obstacle. In Mathematical Aspects of Finite Element Methods, pages 27–34. Springer, 1977.
  22. Pointwise a posteriori error control for elliptic obstacle problems. Numerische Mathematik, 95(1):163–195, 2003.
  23. Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM Journal on Numerical Analysis, 42(5):2118–2135, 2005.
  24. Pointwise a posteriori error analysis of a discontinuous Galerkin method for the elliptic obstacle problem. Accepted in IMA Journal of Numerical Analysis.
  25. Pointwise a posteriori error analysis of quadratic finite element method for the elliptic obstacle problem. Accepted for Publication in Journal of Computational and Applied Mathematics, 2022.
  26. Pointwise a posteriori error analysis of a finite element method for the Signorini problem. Journal of Scientific Computing, 91(2):1–34, 2022.
  27. Estimates for Green’s matrices of elliptic systems by Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT theory. Manuscripta Mathematica, 88(1):261–273, 1995.
  28. A posteriori error analysis for parabolic variational inequalities. ESAIM: Mathematical Modelling and Numerical Analysis, 41(3):485–511, 2007.
  29. Pointwise a posteriori error estimates for monotone semi-linear equations. Numerische Mathematik, 104(4):515–538, 2006.
  30. Roland Glowinski. Numerical methods for nonlinear variational problems. Tata Institute of Fundamental Research, 1980.
  31. The Green’s function estimates for strongly elliptic systems of second order. Manuscripta Mathematica, 124(2):139–172, 2007.
  32. Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains. Transactions of the American Mathematical Society, 361(6):3303–3323, 2009.
  33. The mathematical theory of finite element methods, volume 15. Springer Science & Business Media, 2007.
  34. A posteriori error estimators for regularized total variation of characteristic functions. SIAM Journal on Numerical Analysis, 41(6):2032–2055, 2003.
  35. Rüdiger Verfürth. A review of a posteriori error estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner, Citeseer, 1996.
  36. Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.
  37. Luigi Ambrosio. Lecture notes on elliptic partial differential equations. Unpublished lecture notes. Scuola Normale Superiore di Pisa, 30, 2015.
  38. Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain. Numerische Mathematik, 144(3):553–584, 2020.
  39. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Applied Numerical Mathematics, 54(3-4):555–576, 2005.
Citations (1)

Summary

We haven't generated a summary for this paper yet.