Gravitational Slip parameter and Gravitational Waves in Einstein-Cartan theory (2401.02129v2)
Abstract: We study the evolution of scalar and tensor cosmological perturbations in the framework of the Einstein-Cartan theory of gravity. The value of the gravitational slip parameter which is defined as the ratio of the two scalar potentials in the Newtonian gauge, can be used to determine whether or not the gravity is modified. We calculate the value of slip parameter in the Einstein-Cartan cosmology and show that it falls within the observed range. We also discuss the evolution of the cosmic gravitational waves as another measure of the modification of gravity.
- F. W. Dyson, A. S. Eddington, and C. Davidson, Philosophical Transactions of the Royal Society of London Series A 220, 291 (1920).
- P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (1992).
- R. D. Blandford and R. Narayan, Annual Review of Astronomy and Astrophysics 30, 311 (1992).
- M. Bartelmann and P. Schneider, Physics Reports 340, 291 (2001).
- R. V. Pound and G. A. Rebka, Apparent weight of photons, Phys. Rev. Lett. 4, 337 (1960).
- B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).
- S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
- P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
- A. G. Riess et al., The Astronomical Journal 116, 1009 (1998).
- V. Sahni and A. Starobinsky, International Journal of Modern Physics D 15, 2105 (2006).
- A. G. Riess et al., apj 560, 49 (2001).
- J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).
- V. Sahni (Springer Berlin Heidelberg, 2004) pp. 141–179.
- G. Bertone, D. Hooper, and J. Silk, Physics Reports 405, 279 (2005).
- E. Cartan, Annales scientifiques de l’École Normale Supérieure 3e série, 40, 325 (1923).
- E. Cartan, Annales scientifiques de l’École Normale Supérieure 3e série, 41, 1 (1924).
- E. Cartan, Annales scientifiques de l’École Normale Supérieure 3e série, 42, 17 (1925).
- F. W. Hehl, P. von der Heyde, and G. D. Kerlick, Phys. Rev. D 10, 1066 (1974).
- S. Akhshabi and S. Zamani, (2023), arXiv:2305.00415 [gr-qc] .
- N. Popławski, Phys. Rev. D 85, 107502 (2012).
- Q. Huang, P. Wu, and H. Yu, Phys. Rev. D 91, 103502 (2015).
- J. a. Magueijo, T. G. Zlosnik, and T. W. B. Kibble, Phys. Rev. D 87, 063504 (2013).
- E. Elizalde et al., Physics of the Dark Universe 40, 101197 (2023).
- V. de Sabbata, Nuovo Cimento A Serie 107, 363 (1994).
- L. Amendola, M. Kunz, and D. Sapone, Journal of Cosmology and Astroparticle Physics 2008 (04), 013.
- R. R. Caldwell and M. Doran, Phys. Rev. D 72, 043527 (2005).
- E. V. Linder, Phys. Rev. D 72, 043529 (2005).
- W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007).
- R. Bean and M. Tangmatitham, Phys. Rev. D 81, 083534 (2010).
- E. Bertschinger, Astrophys. J. 648, 797 (2006).
- R. A. Battye and J. A. Pearson, Journal of Cosmology and Astroparticle Physics 2012 (07), 019.
- A. M. Pinho, S. Casas, and L. Amendola, Journal of Cosmology and Astroparticle Physics 2018 (11), 027.
- S. Bravo Medina, M. Nowakowski, and D. Batic, Annals of Physics 400, 64 (2019).
- A. Riotto, ICTP Lect. Notes Ser. 14, 317 (2003), arXiv:hep-ph/0210162 .
- A. De Felice, T. Kobayashi, and S. Tsujikawa, Physics Letters B 706, 123 (2011).
- A. D. Felice and S. Tsujikawa, Journal of Cosmology and Astroparticle Physics 2012 (02), 007.
- H. Nersisyan, N. A. Lima, and L. Amendola, (2018).
- D. Baumann, Cosmology, part III Mathematical Tripos (Cambridge University Press, 2022).
- I. N. Sneddon, Proceedings of the Edinburgh Mathematical Society 12, 169–169 (1961).
- H. J. W. George B. Arfken, Mathematical Methods for Physicists (Academic Press, 2005).
- G. N. W. E. T. Whittaker, A Course of Modern Analysis (Cambridge University Press, 1990).
- M. Roos, Introduction to cosmology (Chichester: Wiley, 1994).
- I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999).
- N. Arkani-Hamed and S. Dimopoulos, Journal of High Energy Physics 2005, 073 (2005).
- G. Dvali, Q. Shafi, and R. Schaefer, Phys. Rev. Lett. 73, 1886 (1994).
- S. M. Carroll, Living Reviews in Relativity 4, 10.12942/lrr-2001-1 (2001).
- V. Faraoni and S. Capozziello, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, Dordrecht, 2011).
- S. Capozziello and M. D. Laurentis, Physics Reports 509, 167 (2011).
- V. Faraoni, Cosmology in scalar tensor gravity (2004).
- F. Müller-Hoissen, Nuclear Physics B 346, 235 (1990).
- M. Gasperini, Phys. Rev. Lett. 56, 2873 (1986).
- N. J. Popławski, Physics Letters B 694, 181 (2010).
- M.-S. Ma, F. Liu, and R. Zhao, Classical and Quantum Gravity 31, 095001 (2014).
- S. Solodukhin, Physics Letters B 319, 87 (1993).
- N. Popławski, The Astrophysical Journal 832, 96 (2016).
- M. W. Kalinowski, Letters in Mathematical Physics 5, 489 (1981).
- A. Shafieloo and C. Clarkson, Phys. Rev. D 81, 083537 (2010).
- A. Shafieloo and E. V. Linder, Phys. Rev. D 84, 063519 (2011).
- D. Huterer and G. Starkman, Phys. Rev. Lett. 90, 031301 (2003).
- M. B. Adler Ronald and M. Schiffer, Introduction to general relativity, Vol. 220 (McGraw-Hill, 1975).
- F. Baudoin and N. O’Connell, (2008), arXiv:0809.2506 [math.PR] .
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.