Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Standard Model from String Theory: What Have We Learned? (2401.01939v2)

Published 3 Jan 2024 in hep-th and hep-ph

Abstract: Amidst all candidates of physics beyond the Standard Model, string theory provides a unique proposal for incorporating gauge and gravitational interactions. In string theory, a four-dimensional theory that unifies quantum mechanics and gravity is obtained automatically if one posits that the additional dimensions predicted by the theory are small and curled up, a concept known as compactification. The gauge sector of the theory is specified by the topology and geometry of the extra dimensions, and the challenge is to reproduce all the features of the Standard Model of Particle Physics from them. We review the state-of-the-art in reproducing the Standard Model from string compactifications, together with the lessons drawn from this fascinating quest. We describe novel scenarios and mechanisms that string theory provides to address some of the Standard Model puzzles, as well as the most frequent signatures of new physics that could be detected in future experiments. We finally comment on recent developments that connect, in a rather unexpected way, the Standard Model with Quantum Gravity, and that may change our field theory notion of naturalness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (192)
  1. “The Heterotic String” In Phys. Rev. Lett. 54, 1985, pp. 502–505 DOI: 10.1103/PhysRevLett.54.502
  2. “Vacuum Configurations for Superstrings” In Nucl. Phys. B 258, 1985, pp. 46–74 DOI: 10.1016/0550-3213(85)90602-9
  3. Luis E. Ibanez and Angel M. Uranga “String theory and particle physics: An introduction to string phenomenology” Cambridge University Press, 2012
  4. “Snowmass White Paper: String Theory and Particle Physics”, 2022 arXiv:2204.01742 [hep-th]
  5. Fernando Marchesano, Bert Schellekens and Timo Weigand “D-brane and F-theory Model Building”, 2022 arXiv:2212.07443 [hep-th]
  6. “Snowmass White Paper: Cosmology at the Theory Frontier” In 2022 Snowmass Summer Study, 2022 arXiv:2203.07629 [hep-th]
  7. Michael B. Green, J. H. Schwarz and Edward Witten “Superstring Theory. vol. 2: Loop Amplitudes, Anomalies and Phenomenology”, 1988
  8. K. Becker, M. Becker and J. H. Schwarz “String theory and M-theory: A modern introduction” Cambridge University Press, 2006 DOI: 10.1017/CBO9780511816086
  9. “Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes” In Phys. Rept. 445, 2007, pp. 1–193 DOI: 10.1016/j.physrep.2007.04.003
  10. Ralph Blumenhagen, Dieter Lüst and Stefan Theisen “Basic concepts of string theory”, Theoretical and Mathematical Physics Heidelberg, Germany: Springer, 2013 DOI: 10.1007/978-3-642-29497-6
  11. “Inflation and String Theory”, Cambridge Monographs on Mathematical Physics Cambridge University Press, 2015 DOI: 10.1017/CBO9781316105733
  12. Alessandro Tomasiello “Geometry of String Theory Compactifications” Cambridge University Press, 2022 DOI: 10.1017/9781108635745
  13. W. Lerche, D. Lust and A. N. Schellekens “Chiral Four-Dimensional Heterotic Strings from Selfdual Lattices” In Nucl. Phys. B 287, 1987, pp. 477 DOI: 10.1016/0550-3213(87)90115-5
  14. T. P. T. Dijkstra, L. R. Huiszoon and A. N. Schellekens “Supersymmetric standard model spectra from RCFT orientifolds” In Nucl. Phys. B 710, 2005, pp. 3–57 DOI: 10.1016/j.nuclphysb.2004.12.032
  15. Alon E. Faraggi, Elisa Manno and Cristina Timirgaziu “Minimal Standard Heterotic String Models” In Eur. Phys. J. C 50, 2007, pp. 701–710 DOI: 10.1140/epjc/s10052-007-0243-5
  16. Steven Abel, Keith R. Dienes and Eirini Mavroudi “Towards a nonsupersymmetric string phenomenology” In Phys. Rev. D 91.12, 2015, pp. 126014 DOI: 10.1103/PhysRevD.91.126014
  17. Mariana Grana “Flux compactifications in string theory: A Comprehensive review” In Phys. Rept. 423, 2006, pp. 91–158 DOI: 10.1016/j.physrep.2005.10.008
  18. “Strings on Orbifolds” In Nucl. Phys. B 261, 1985, pp. 678–686 DOI: 10.1016/0550-3213(85)90593-0
  19. “Strings on Orbifolds. 2.” In Nucl. Phys. B 274, 1986, pp. 285–314 DOI: 10.1016/0550-3213(86)90287-7
  20. Ralph Blumenhagen, Gabriele Honecker and Timo Weigand “Loop-corrected compactifications of the heterotic string with line bundles” In JHEP 06, 2005, pp. 020 DOI: 10.1088/1126-6708/2005/06/020
  21. Lance J. Dixon, Vadim Kaplunovsky and Cumrun Vafa “On Four-Dimensional Gauge Theories from Type II Superstrings” In Nucl. Phys. B 294, 1987, pp. 43–82 DOI: 10.1016/0550-3213(87)90572-4
  22. Augusto Sagnotti “A Note on the Green-Schwarz mechanism in open string theories” In Phys. Lett. B 294, 1992, pp. 196–203 DOI: 10.1016/0370-2693(92)90682-T
  23. Luis E. Ibanez, F. Marchesano and R. Rabadan “Getting just the standard model at intersecting branes” In JHEP 11, 2001, pp. 002 DOI: 10.1088/1126-6708/2001/11/002
  24. Cumrun Vafa “Evidence for F theory” In Nucl. Phys. B469, 1996, pp. 403–418 DOI: 10.1016/0550-3213(96)00172-1
  25. Timo Weigand “TASI Lectures on F-theory” In PoS TASI2017, 2018, pp. 016 arXiv:1806.01854 [hep-th]
  26. “TASI Lectures on Abelian and Discrete Symmetries in F-theory” In PoS TASI2017, 2018, pp. 020 DOI: 10.22323/1.305.0020
  27. Chris Beasley, Jonathan J. Heckman and Cumrun Vafa “GUTs and Exceptional Branes in F-theory - I” In JHEP 01, 2009, pp. 058 DOI: 10.1088/1126-6708/2009/01/058
  28. Chris Beasley, Jonathan J. Heckman and Cumrun Vafa “GUTs and Exceptional Branes in F-theory - II: Experimental Predictions” In JHEP 01, 2009, pp. 059 DOI: 10.1088/1126-6708/2009/01/059
  29. “Breaking GUT Groups in F-Theory” In Adv. Theor. Math. Phys. 15.6, 2011, pp. 1523–1603 DOI: 10.4310/ATMP.2011.v15.n6.a1
  30. “Model Building with F-Theory” In Adv. Theor. Math. Phys. 15.5, 2011, pp. 1237–1317 DOI: 10.4310/ATMP.2011.v15.n5.a2
  31. Philip Candelas, Eugene Perevalov and Govindan Rajesh “Toric geometry and enhanced gauge symmetry of F theory / heterotic vacua” In Nucl. Phys. B 507, 1997, pp. 445–474 DOI: 10.1016/S0550-3213(97)00563-4
  32. “F theory, SO(32) and toric geometry” In Phys. Lett. B 413, 1997, pp. 63–69 DOI: 10.1016/S0370-2693(97)01047-2
  33. “Toward realistic intersecting D-brane models” In Ann. Rev. Nucl. Part. Sci. 55, 2005, pp. 71–139 DOI: 10.1146/annurev.nucl.55.090704.151541
  34. “Models of Particle Physics from Type IIB String Theory and F-theory: A Review” In Int. J. Mod. Phys. A 28, 2013, pp. 1330005 DOI: 10.1142/S0217751X13300056
  35. T. P. T. Dijkstra, L. R. Huiszoon and A. N. Schellekens “Chiral supersymmetric standard model spectra from orientifolds of Gepner models” In Phys. Lett. B 609, 2005, pp. 408–417 DOI: 10.1016/j.physletb.2004.04.094
  36. “Towards the Standard Model in F-theory” In Fortsch. Phys. 63.2, 2015, pp. 55–104 DOI: 10.1002/prop.201400072
  37. Martin Bies, Christoph Mayrhofer and Timo Weigand “Gauge Backgrounds and Zero-Mode Counting in F-Theory” In JHEP 11, 2017, pp. 081 DOI: 10.1007/JHEP11(2017)081
  38. Mirjam Cvetič, Gary Shiu and Angel M. Uranga “Chiral four-dimensional N=1 supersymmetric type 2A orientifolds from intersecting D6 branes” In Nucl. Phys. B615, 2001, pp. 3–32 DOI: 10.1016/S0550-3213(01)00427-8
  39. Mirjam Cvetič, Gary Shiu and Angel M. Uranga “Three family supersymmetric standard - like models from intersecting brane worlds” In Phys. Rev. Lett. 87, 2001, pp. 201801 DOI: 10.1103/PhysRevLett.87.201801
  40. “Building MSSM flux vacua” In JHEP 11, 2004, pp. 041 DOI: 10.1088/1126-6708/2004/11/041
  41. Nikhil Raghuram, Washington Taylor and Andrew P. Turner “General F-theory models with tuned (S⁢U⁢(3)×S⁢U⁢(2)×U⁢(1))/Z6𝑆𝑈3𝑆𝑈2𝑈1subscript𝑍6({SU}(3)\times{SU}(2)\times{U}(1))/{Z}_{6}( italic_S italic_U ( 3 ) × italic_S italic_U ( 2 ) × italic_U ( 1 ) ) / italic_Z start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT symmetry” In JHEP 04, 2020, pp. 008 DOI: 10.1007/JHEP04(2020)008
  42. “The Standard Model quiver in de Sitter string compactifications” In JHEP 08, 2021, pp. 109 DOI: 10.1007/JHEP08(2021)109
  43. “An SU(5) heterotic standard model” In Phys. Lett. B633, 2006, pp. 783–791 DOI: 10.1016/j.physletb.2005.12.042
  44. “The Exact MSSM spectrum from string theory” In JHEP 05, 2006, pp. 043 DOI: 10.1088/1126-6708/2006/05/043
  45. “A Mini-landscape of exact MSSM spectra in heterotic orbifolds” In Phys. Lett. B 645, 2007, pp. 88–94 DOI: 10.1016/j.physletb.2006.12.012
  46. “Mapping an Island in the Landscape” In JHEP 09, 2007, pp. 128 DOI: 10.1088/1126-6708/2007/09/128
  47. “Heterotic Line Bundle Standard Models” In JHEP 06, 2012, pp. 113 DOI: 10.1007/JHEP06(2012)113
  48. “Quadrillion F𝐹Fitalic_F-Theory Compactifications with the Exact Chiral Spectrum of the Standard Model” In Phys. Rev. Lett. 123.10, 2019, pp. 101601 DOI: 10.1103/PhysRevLett.123.101601
  49. “Exotic matter on singular divisors in F-theory” In JHEP 11, 2017, pp. 124 DOI: 10.1007/JHEP11(2017)124
  50. Washington Taylor and Andrew P. Turner “Generic matter representations in 6D supergravity theories” In JHEP 05, 2019, pp. 081 DOI: 10.1007/JHEP05(2019)081
  51. “Large U(1) charges in F-theory” In JHEP 10, 2018, pp. 182 DOI: 10.1007/JHEP10(2018)182
  52. Wolfgang Lerche “On Matrix Factorizations, Residue Pairings and Homological Mirror Symmetry”, 2018 arXiv:1803.10333 [hep-th]
  53. D. Cremades, L. E. Ibanez and F. Marchesano “Yukawa couplings in intersecting D-brane models” In JHEP 07, 2003, pp. 038 DOI: 10.1088/1126-6708/2003/07/038
  54. D. Cremades, L. E. Ibanez and F. Marchesano “Computing Yukawa couplings from magnetized extra dimensions” In JHEP 05, 2004, pp. 079 DOI: 10.1088/1126-6708/2004/05/079
  55. L. E. Ibanez and Robert Richter “Stringy Instantons and Yukawa Couplings in MSSM-like Orientifold Models” In JHEP 03, 2009, pp. 090 DOI: 10.1088/1126-6708/2009/03/090
  56. Hans Peter Nilles, Michael Ratz and Patrick K. S. Vaudrevange “Origin of Family Symmetries” In Fortsch. Phys. 61, 2013, pp. 493–506 DOI: 10.1002/prop.201200120
  57. “Non-Abelian discrete gauge symmetries in 4d string models” In JHEP 09, 2012, pp. 059 DOI: 10.1007/JHEP09(2012)059
  58. Fernando Marchesano, Diego Regalado and Liliana Vazquez-Mercado “Discrete flavor symmetries in D-brane models” In JHEP 09, 2013, pp. 028 DOI: 10.1007/JHEP09(2013)028
  59. “Yukawa Couplings in F-theory and Non-Commutative Geometry”, 2009 arXiv:0910.0477 [hep-th]
  60. “Non-perturbative effects on seven-brane Yukawa couplings” In Phys. Rev. Lett. 104, 2010, pp. 231601 DOI: 10.1103/PhysRevLett.104.231601
  61. “T-Branes and Monodromy” In JHEP 07, 2011, pp. 030 DOI: 10.1007/JHEP07(2011)030
  62. “Non-perturbative effects and Yukawa hierarchies in F-theory SU(5) Unification” [Erratum: JHEP 07, 036 (2013)] In JHEP 03, 2013, pp. 140 DOI: 10.1007/JHEP03(2013)140
  63. “Up-type quark masses in SU(5) F-theory models” In JHEP 11, 2013, pp. 125 DOI: 10.1007/JHEP11(2013)125
  64. Fernando Marchesano, Diego Regalado and Gianluca Zoccarato “Yukawa hierarchies at the point of E88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT in F-theory” In JHEP 04, 2015, pp. 179 DOI: 10.1007/JHEP04(2015)179
  65. Federico Carta, Fernando Marchesano and Gianluca Zoccarato “Fitting fermion masses and mixings in F-theory GUTs” In JHEP 03, 2016, pp. 126 DOI: 10.1007/JHEP03(2016)126
  66. “D-branes at singularities: A Bottom up approach to the string embedding of the standard model” In JHEP 08, 2000, pp. 002 DOI: 10.1088/1126-6708/2000/08/002
  67. Michael R. Douglas and Gregory W. Moore “D-branes, quivers, and ALE instantons”, 1996 arXiv:hep-th/9603167
  68. David Berenstein, Vishnu Jejjala and Robert G. Leigh “The Standard model on a D-brane” In Phys. Rev. Lett. 88, 2002, pp. 071602 DOI: 10.1103/PhysRevLett.88.071602
  69. “D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics” In JHEP 06, 2010, pp. 092 DOI: 10.1007/JHEP06(2010)092
  70. “Building the standard model on a D3-brane” In JHEP 01, 2007, pp. 106 DOI: 10.1088/1126-6708/2007/01/106
  71. Martijn Wijnholt “Large volume perspective on branes at singularities” In Adv. Theor. Math. Phys. 7.6, 2003, pp. 1117–1153 DOI: 10.4310/ATMP.2003.v7.n6.a6
  72. “D-branes at Singularities, Compactification, and Hypercharge” In JHEP 01, 2007, pp. 107 DOI: 10.1088/1126-6708/2007/01/107
  73. Matthew J. Dolan, Sven Krippendorf and Fernando Quevedo “Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity” In JHEP 10, 2011, pp. 024 DOI: 10.1007/JHEP10(2011)024
  74. Fernando Quevedo “Local String Models and Moduli Stabilisation” In Mod. Phys. Lett. A 30.07, 2015, pp. 1530004 DOI: 10.1142/S0217732315300049
  75. Joseph P. Conlon and Eran Palti “Gauge Threshold Corrections for Local Orientifolds” In JHEP 09, 2009, pp. 019 DOI: 10.1088/1126-6708/2009/09/019
  76. Joseph P. Conlon, Mark Goodsell and Eran Palti “One-loop Yukawa Couplings in Local Models” In JHEP 11, 2010, pp. 087 DOI: 10.1007/JHEP11(2010)087
  77. “D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation” In JHEP 09, 2012, pp. 019 DOI: 10.1007/JHEP09(2012)019
  78. “Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter” In JHEP 05, 2014, pp. 001 DOI: 10.1007/JHEP05(2014)001
  79. “D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation” In JHEP 07, 2013, pp. 150 DOI: 10.1007/JHEP07(2013)150
  80. Timo Weigand “Lectures on F-theory compactifications and model building” In Class. Quant. Grav. 27, 2010, pp. 214004 DOI: 10.1088/0264-9381/27/21/214004
  81. Jonathan J. Heckman and Cumrun Vafa “Flavor Hierarchy From F-theory” In Nucl. Phys. B 837, 2010, pp. 137–151 DOI: 10.1016/j.nuclphysb.2010.05.009
  82. Nima Arkani-Hamed, Savas Dimopoulos and G. R. Dvali “The Hierarchy problem and new dimensions at a millimeter” In Phys. Lett. B 429, 1998, pp. 263–272 DOI: 10.1016/S0370-2693(98)00466-3
  83. “New dimensions at a millimeter to a Fermi and superstrings at a TeV” In Phys. Lett. B 436, 1998, pp. 257–263 DOI: 10.1016/S0370-2693(98)00860-0
  84. “A Large mass hierarchy from a small extra dimension” In Phys. Rev. Lett. 83, 1999, pp. 3370–3373 DOI: 10.1103/PhysRevLett.83.3370
  85. Herman L. Verlinde “Holography and compactification” In Nucl. Phys. B 580, 2000, pp. 264–274 DOI: 10.1016/S0550-3213(00)00224-8
  86. Igor R. Klebanov and Matthew J. Strassler “Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities” In JHEP 08, 2000, pp. 052 DOI: 10.1088/1126-6708/2000/08/052
  87. Steven B. Giddings, Shamit Kachru and Joseph Polchinski “Hierarchies from fluxes in string compactifications” In Phys. Rev. D 66, 2002, pp. 106006 DOI: 10.1103/PhysRevD.66.106006
  88. Oliver DeWolfe and Steven B. Giddings “Scales and hierarchies in warped compactifications and brane worlds” In Phys. Rev. D 67, 2003, pp. 066008 DOI: 10.1103/PhysRevD.67.066008
  89. Tom Banks and Lance J. Dixon “Constraints on String Vacua with Space-Time Supersymmetry” In Nucl. Phys. B 307, 1988, pp. 93–108 DOI: 10.1016/0550-3213(88)90523-8
  90. “Symmetries and Strings in Field Theory and Gravity” In Phys. Rev. D 83, 2011, pp. 084019 DOI: 10.1103/PhysRevD.83.084019
  91. Ralph Blumenhagen, Mirjam Cvetic and Timo Weigand “Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-Brane models” In Nucl. Phys. B 771, 2007, pp. 113–142 DOI: 10.1016/j.nuclphysb.2007.02.016
  92. L. E. Ibanez and A. M. Uranga “Neutrino Majorana Masses from String Theory Instanton Effects” In JHEP 03, 2007, pp. 052 DOI: 10.1088/1126-6708/2007/03/052
  93. “Gaugino Condensates and D-terms from D7-branes” In JHEP 01, 2007, pp. 078 DOI: 10.1088/1126-6708/2007/01/078
  94. “D-Brane Instantons in Type II Orientifolds” In Ann. Rev. Nucl. Part. Sci. 59, 2009, pp. 269–296 DOI: 10.1146/annurev.nucl.010909.083113
  95. “Stringy instantons at orbifold singularities” In JHEP 06, 2007, pp. 067 DOI: 10.1088/1126-6708/2007/06/067
  96. Arthur Hebecker, Thomas Mikhail and Pablo Soler “Euclidean wormholes, baby universes, and their impact on particle physics and cosmology” In Front. Astron. Space Sci. 5, 2018, pp. 35 DOI: 10.3389/fspas.2018.00035
  97. “Discrete gauge symmetries in D-brane models” In JHEP 12, 2011, pp. 113 DOI: 10.1007/JHEP12(2011)113
  98. Pablo G. Camara, Luis E. Ibanez and Fernando Marchesano “RR photons” In JHEP 09, 2011, pp. 110 DOI: 10.1007/JHEP09(2011)110
  99. “Geometric bounds on the 1-form gauge sector” In Phys. Rev. D 108.8, 2023, pp. 086021 DOI: 10.1103/PhysRevD.108.086021
  100. Hans Peter Nilles and Saul Ramos-Sanchez “The Flavor Puzzle: Textures and Symmetries”, 2023 arXiv:2308.14810 [hep-ph]
  101. Alon E. Faraggi and Edi Halyo “Neutrino masses in superstring derived standard - like models” In Phys. Lett. B 307, 1993, pp. 311–317 DOI: 10.1016/0370-2693(93)90226-8
  102. “Massive neutrinos and (heterotic) string theory” In Phys. Rev. D 71, 2005, pp. 115013 DOI: 10.1103/PhysRevD.71.115013
  103. “Seesaw neutrinos from the heterotic string” In Phys. Rev. Lett. 99, 2007, pp. 021601 DOI: 10.1103/PhysRevLett.99.021601
  104. Radu Tatar, Yoichi Tsuchiya and Taizan Watari “Right-handed Neutrinos in F-theory Compactifications” In Nucl. Phys. B 823, 2009, pp. 1–46 DOI: 10.1016/j.nuclphysb.2009.07.020
  105. “Type IIA moduli stabilization” In JHEP 07, 2005, pp. 066 DOI: 10.1088/1126-6708/2005/07/066
  106. “De Sitter vacua in string theory” In Phys. Rev. D 68, 2003, pp. 046005 DOI: 10.1103/PhysRevD.68.046005
  107. “Systematics of moduli stabilisation in Calabi-Yau flux compactifications” In JHEP 03, 2005, pp. 007 DOI: 10.1088/1126-6708/2005/03/007
  108. “Axions In String Theory” In JHEP 06, 2006, pp. 051 DOI: 10.1088/1126-6708/2006/06/051
  109. Michele Cicoli “Axion-like Particles from String Compactifications” In 9th Patras Workshop on Axions, WIMPs and WISPs, 2013, pp. 235–242 DOI: 10.3204/DESY-PROC-2013-04/cicoli˙michele
  110. Eran Palti, Cumrun Vafa and Timo Weigand “Supersymmetric Protection and the Swampland” In JHEP 06, 2020, pp. 168 DOI: 10.1007/JHEP06(2020)168
  111. “String Axiverse” In Phys. Rev. D 81, 2010, pp. 123530 DOI: 10.1103/PhysRevD.81.123530
  112. J. P. Derendinger, Luis E. Ibanez and Hans Peter Nilles “On the Low-Energy d = 4, N=1 Supergravity Theory Extracted from the d = 10, N=1 Superstring” In Phys. Lett. B 155, 1985, pp. 65–70 DOI: 10.1016/0370-2693(85)91033-0
  113. “Gluino Condensation in Superstring Models” In Phys. Lett. B 156, 1985, pp. 55–60 DOI: 10.1016/0370-2693(85)91354-1
  114. “Is the Superstring Weakly Coupled?” In Phys. Lett. B 162, 1985, pp. 299–302 DOI: 10.1016/0370-2693(85)90927-X
  115. N. V. Krasnikov “On Supersymmetry Breaking in Superstring Theories” In Phys. Lett. B 193, 1987, pp. 37–40 DOI: 10.1016/0370-2693(87)90452-7
  116. “Supersymmetry Breaking From Duality Invariant Gaugino Condensation” In Phys. Lett. B 245, 1990, pp. 401–408 DOI: 10.1016/0370-2693(90)90665-S
  117. “Duality and supersymmetry breaking in string theory” In Phys. Lett. B 245, 1990, pp. 409–416 DOI: 10.1016/0370-2693(90)90666-T
  118. Hans Peter Nilles and M. Olechowski “Gaugino Condensation and Duality Invariance” In Phys. Lett. B 248, 1990, pp. 268–272 DOI: 10.1016/0370-2693(90)90290-M
  119. Pablo G. Camara, L. E. Ibanez and A. M. Uranga “Flux induced SUSY breaking soft terms” In Nucl. Phys. B 689, 2004, pp. 195–242 DOI: 10.1016/j.nuclphysb.2004.04.013
  120. “Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes” In Nucl. Phys. B 690, 2004, pp. 21–61 DOI: 10.1016/j.nuclphysb.2004.04.021
  121. Pablo G. Camara, L. E. Ibanez and A. M. Uranga “Flux-induced SUSY-breaking soft terms on D7-D3 brane systems” In Nucl. Phys. B 708, 2005, pp. 268–316 DOI: 10.1016/j.nuclphysb.2004.11.035
  122. Bobby Samir Acharya, Gordon Kane and Piyush Kumar “Compactified String Theories – Generic Predictions for Particle Physics” In Int. J. Mod. Phys. A 27, 2012, pp. 1230012 DOI: 10.1142/S0217751X12300128
  123. Vadim S. Kaplunovsky and Jan Louis “Model independent analysis of soft terms in effective supergravity and in string theory” In Phys. Lett. B 306, 1993, pp. 269–275 DOI: 10.1016/0370-2693(93)90078-V
  124. A. Brignole, Luis E. Ibanez and C. Munoz “Towards a theory of soft terms for the supersymmetric Standard Model” [Erratum: Nucl.Phys.B 436, 747–748 (1995)] In Nucl. Phys. B 422, 1994, pp. 125–171 DOI: 10.1016/0550-3213(94)00068-9
  125. Joseph P. Conlon “Mirror Mediation” In JHEP 03, 2008, pp. 025 DOI: 10.1088/1126-6708/2008/03/025
  126. L. Aparicio, D. G. Cerdeno and L. E. Ibanez “Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC” In JHEP 07, 2008, pp. 099 DOI: 10.1088/1126-6708/2008/07/099
  127. Shamit Kachru, Liam McAllister and Raman Sundrum “Sequestering in String Theory” In JHEP 10, 2007, pp. 013 DOI: 10.1088/1126-6708/2007/10/013
  128. “Sequestering in String Compactifications” In JHEP 06, 2011, pp. 134 DOI: 10.1007/JHEP06(2011)134
  129. “Gauge: mediated supersymmetry breaking in string compactifications” In JHEP 02, 2006, pp. 020 DOI: 10.1088/1126-6708/2006/02/020
  130. Inaki Garcia-Etxebarria, Fouad Saad and Angel M. Uranga “Local models of gauge mediated supersymmetry breaking in string theory” In JHEP 08, 2006, pp. 069 DOI: 10.1088/1126-6708/2006/08/069
  131. “Gauge/gravity duality and meta-stable dynamical supersymmetry breaking” In JHEP 01, 2007, pp. 083 DOI: 10.1088/1126-6708/2007/01/083
  132. “Heterotic and type I string dynamics from eleven-dimensions” In Nucl. Phys. B 460, 1996, pp. 506–524 DOI: 10.1016/0550-3213(95)00621-4
  133. “The F-theory geometry with most flux vacua” In JHEP 12, 2015, pp. 164 DOI: 10.1007/JHEP12(2015)164
  134. David R. Morrison and Washington Taylor “Classifying bases for 6D F-theory models” In Central Eur. J. Phys. 10, 2012, pp. 1072–1088 DOI: 10.2478/s11534-012-0065-4
  135. David R. Morrison and Washington Taylor “Non-Higgsable clusters for 4D F-theory models” In JHEP 05, 2015, pp. 080 DOI: 10.1007/JHEP05(2015)080
  136. James Halverson, Cody Long and Benjamin Sung “Algorithmic universality in F-theory compactifications” In Phys. Rev. D 96.12, 2017, pp. 126006 DOI: 10.1103/PhysRevD.96.126006
  137. “Scanning the skeleton of the 4D F-theory landscape” In JHEP 01, 2018, pp. 111 DOI: 10.1007/JHEP01(2018)111
  138. “Dark Glueballs and their Ultralight Axions” In Phys. Rev. D 98.4, 2018, pp. 043502 DOI: 10.1103/PhysRevD.98.043502
  139. “Gravitational waves from dark Yang-Mills sectors” In JHEP 05, 2021, pp. 154 DOI: 10.1007/JHEP05(2021)154
  140. “Dark dimension gravitons as dark matter” In JHEP 11, 2023, pp. 109 DOI: 10.1007/JHEP11(2023)109
  141. Miguel Montero, Cumrun Vafa and Irene Valenzuela “The dark dimension and the Swampland” In JHEP 02, 2023, pp. 022 DOI: 10.1007/JHEP02(2023)022
  142. Luis A. Anchordoqui, Ignatios Antoniadis and Dieter Lust “Dark dimension, the swampland, and the dark matter fraction composed of primordial black holes” In Phys. Rev. D 106.8, 2022, pp. 086001 DOI: 10.1103/PhysRevD.106.086001
  143. Kenneth G. Wilson “The Renormalization Group and Strong Interactions” In Phys. Rev. D 3, 1971, pp. 1818 DOI: 10.1103/PhysRevD.3.1818
  144. Gerard Hooft “Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking” In NATO Sci. Ser. B 59, 1980, pp. 135–157 DOI: 10.1007/978-1-4684-7571-5˙9
  145. “Symmetries in quantum field theory and quantum gravity” In Commun. Math. Phys. 383.3, 2021, pp. 1669–1804 DOI: 10.1007/s00220-021-04040-y
  146. Shiraz Minwalla, Mark Van Raamsdonk and Nathan Seiberg “Noncommutative perturbative dynamics” In JHEP 02, 2000, pp. 020 DOI: 10.1088/1126-6708/2000/02/020
  147. Steven Abel and Keith R. Dienes “Calculating the Higgs mass in string theory” In Phys. Rev. D 104.12, 2021, pp. 126032 DOI: 10.1103/PhysRevD.104.126032
  148. Michael R. Douglas “Basic results in vacuum statistics” In Comptes Rendus Physique 5, 2004, pp. 965–977 DOI: 10.1016/j.crhy.2004.09.008
  149. Leonard Susskind “Supersymmetry breaking in the anthropic landscape” In From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, 2004, pp. 1745–1749 DOI: 10.1142/9789812775344˙0040
  150. Michael R. Douglas “Statistical analysis of the supersymmetry breaking scale”, 2004 arXiv:hep-th/0405279
  151. Michael Dine, Elie Gorbatov and Scott D. Thomas “Low energy supersymmetry from the landscape” In JHEP 08, 2008, pp. 098 DOI: 10.1088/1126-6708/2008/08/098
  152. Cumrun Vafa “The String landscape and the swampland”, 2005 arXiv:hep-th/0509212
  153. T. Daniel Brennan, Federico Carta and Cumrun Vafa “The String Landscape, the Swampland, and the Missing Corner” In PoS TASI2017, 2017, pp. 015 DOI: 10.22323/1.305.0015
  154. Eran Palti “The Swampland: Introduction and Review” In Fortsch. Phys. 67.6, 2019, pp. 1900037 DOI: 10.1002/prop.201900037
  155. “Lectures on the Swampland Program in String Compactifications”, 2021 arXiv:2102.01111 [hep-th]
  156. “The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics” In Universe 7.8, 2021, pp. 273 DOI: 10.3390/universe7080273
  157. “The Weak Gravity Conjecture: A Review”, 2022 arXiv:2201.08380 [hep-th]
  158. Gary Shiu, Pablo Soler and Fang Ye “Milli-Charged Dark Matter in Quantum Gravity and String Theory” In Phys. Rev. Lett. 110.24, 2013, pp. 241304 DOI: 10.1103/PhysRevLett.110.241304
  159. “The String landscape, black holes and gravity as the weakest force” In JHEP 06, 2007, pp. 060 DOI: 10.1088/1126-6708/2007/06/060
  160. “Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation” In JHEP 10, 2015, pp. 023 DOI: 10.1007/JHEP10(2015)023
  161. “On Axionic Field Ranges, Loopholes and the Weak Gravity Conjecture” In JHEP 04, 2016, pp. 017 DOI: 10.1007/JHEP04(2016)017
  162. Miguel Montero, Angel M. Uranga and Irene Valenzuela “Transplanckian axions!?” In JHEP 08, 2015, pp. 032 DOI: 10.1007/JHEP08(2015)032
  163. Ben Heidenreich, Matthew Reece and Tom Rudelius “Weak Gravity Strongly Constrains Large-Field Axion Inflation” In JHEP 12, 2015, pp. 108 DOI: 10.1007/JHEP12(2015)108
  164. Matthew Reece “Photon Masses in the Landscape and the Swampland” In JHEP 07, 2019, pp. 181 DOI: 10.1007/JHEP07(2019)181
  165. “Scalar Fields, Hierarchical UV/IR Mixing and The Weak Gravity Conjecture” In JHEP 02, 2018, pp. 040 DOI: 10.1007/JHEP02(2018)040
  166. Nathaniel Craig, Isabel Garcia Garcia and Seth Koren “The Weak Scale from Weak Gravity” In JHEP 09, 2019, pp. 081 DOI: 10.1007/JHEP09(2019)081
  167. “Non-supersymmetric AdS and the Swampland” In Adv. Theor. Math. Phys. 21, 2017, pp. 1787–1801 DOI: 10.4310/ATMP.2017.v21.n7.a8
  168. Luis E. Ibanez, Victor Martin-Lozano and Irene Valenzuela “Constraining Neutrino Masses, the Cosmological Constant and BSM Physics from the Weak Gravity Conjecture” In JHEP 11, 2017, pp. 066 DOI: 10.1007/JHEP11(2017)066
  169. “Weak Gravity Conjecture, Multiple Point Principle and the Standard Model Landscape” In JHEP 11, 2017, pp. 043 DOI: 10.1007/JHEP11(2017)043
  170. Yuta Hamada, Toshifumi Noumi and Gary Shiu “Weak Gravity Conjecture from Unitarity and Causality” In Phys. Rev. Lett. 123.5, 2019, pp. 051601 DOI: 10.1103/PhysRevLett.123.051601
  171. Brando Bellazzini, Matthew Lewandowski and Javi Serra “Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity” In Phys. Rev. Lett. 123.25, 2019, pp. 251103 DOI: 10.1103/PhysRevLett.123.251103
  172. “Positivity Bounds and the Massless Spin-2 Pole” In Phys. Rev. D 102.12, 2020, pp. 125023 DOI: 10.1103/PhysRevD.102.125023
  173. Junsei Tokuda, Katsuki Aoki and Shin’ichi Hirano “Gravitational positivity bounds” In JHEP 11, 2020, pp. 054 DOI: 10.1007/JHEP11(2020)054
  174. “Gravitational Positivity for Phenomenologists: Dark Gauge Boson in the Swampland”, 2023 arXiv:2305.10058 [hep-ph]
  175. Patrick Draper, Isabel Garcia Garcia and Matthew Reece “Snowmass White Paper: Implications of Quantum Gravity for Particle Physics” In 2022 Snowmass Summer Study, 2022 arXiv:2203.07624 [hep-ph]
  176. “Snowmass White Paper: UV Constraints on IR Physics” In 2022 Snowmass Summer Study, 2022 arXiv:2203.06805 [hep-th]
  177. Joseph Polchinski “Monopoles, duality, and string theory” In Int. J. Mod. Phys. A 19S1, 2004, pp. 145–156 DOI: 10.1142/S0217751X0401866X
  178. “Generalized Global Symmetries” In JHEP 02, 2015, pp. 172 DOI: 10.1007/JHEP02(2015)172
  179. “Topological Operators and Completeness of Spectrum in Discrete Gauge Theories” In JHEP 12, 2020, pp. 172 DOI: 10.1007/JHEP12(2020)172
  180. “Non-invertible global symmetries and completeness of the spectrum” In JHEP 09, 2021, pp. 203 DOI: 10.1007/JHEP09(2021)203
  181. Hee-Cheol Kim, Gary Shiu and Cumrun Vafa “Branes and the Swampland” In Phys. Rev. D 100.6, 2019, pp. 066006 DOI: 10.1103/PhysRevD.100.066006
  182. “String Universality and Non-Simply-Connected Gauge Groups in 8d” In Phys. Rev. Lett. 125.21, 2020, pp. 211602 DOI: 10.1103/PhysRevLett.125.211602
  183. “Cobordism Conjecture, Anomalies, and the String Lamppost Principle” In JHEP 01, 2021, pp. 063 DOI: 10.1007/JHEP01(2021)063
  184. “Exploring the landscape of heterotic strings on Tdsuperscript𝑇𝑑T^{d}italic_T start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT” In JHEP 10, 2020, pp. 194 DOI: 10.1007/JHEP10(2020)194
  185. “Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua” In Phys. Rev. D 104.8, 2021, pp. 086018 DOI: 10.1103/PhysRevD.104.086018
  186. “Exploring the landscape of CHL strings on Td𝑑{}^{d}start_FLOATSUPERSCRIPT italic_d end_FLOATSUPERSCRIPT” In JHEP 08, 2021, pp. 095 DOI: 10.1007/JHEP08(2021)095
  187. “Higher-form symmetries and their anomalies in M-/F-theory duality” In Phys. Rev. D 104.12, 2021, pp. 126019 DOI: 10.1103/PhysRevD.104.126019
  188. “Compactness of brane moduli and the String Lamppost Principle in d >>> 6” In JHEP 02, 2022, pp. 082 DOI: 10.1007/JHEP02(2022)082
  189. “One Loop to Rule Them All: Eight and Nine Dimensional String Vacua from Junctions”, 2022 arXiv:2203.03644 [hep-th]
  190. Allan Adams, Oliver DeWolfe and Washington Taylor “String universality in ten dimensions” In Phys. Rev. Lett. 105, 2010, pp. 071601 DOI: 10.1103/PhysRevLett.105.071601
  191. David R. Morrison and Washington Taylor “Charge completeness and the massless charge lattice in F-theory models of supergravity” In JHEP 12, 2021, pp. 040 DOI: 10.1007/JHEP12(2021)040
  192. Nikhil Raghuram, Washington Taylor and Andrew P. Turner “Automatic enhancement in 6D supergravity and F-theory models” In JHEP 07, 2021, pp. 048 DOI: 10.1007/JHEP07(2021)048
Citations (8)

Summary

  • The paper demonstrates that various string compactification methods successfully reproduce Standard Model features such as non-Abelian gauge symmetries and chiral fermion spectra.
  • It shows that the natural generation of Yukawa couplings via overlap integrals in extra dimensions offers insights into the hierarchical structures observed in particle physics.
  • The research highlights the crucial interplay between string theory and quantum gravity, setting constraints on effective field theories and suggesting innovative dark sector models.

Overview of "The Standard Model from String Theory: What Have We Learned?"

The paper, authored by Fernando Marchesano, Gary Shiu, and Timo Weigand, explores the intricate relationship between string theory and the Standard Model (SM) of particle physics. String theory, a candidate for a theory beyond the current SM, offers a unique framework for integrating gauge and gravitational interactions. This essay provides a critical overview of the paper's content, focusing on the methodologies utilized to derive the SM from string compactifications, the insights gained, and the broader theoretical implications.

Embedding the Standard Model in String Theory

String theory inherently suggests a higher-dimensional universe, necessitating compactification to produce an effective four-dimensional theory akin to the SM. The task is to reproduce the SM's features, including its gauge group and chiral fermion content, through various compactification schemes. The review emphasizes the diversity of string constructions capable of this feat, particularly through heterotic string theory, Type II string theories with D-branes, and F-theory, each providing unique mechanisms and insights.

Mechanisms and Features of String Compactifications

Significant focus is given to the methodology for producing gauge symmetries, the chiral spectra, and Yukawa couplings from string compactifications. Notably:

  • Gauge Symmetries: The emergence of non-Abelian gauge symmetries in string theory can occur via different mechanisms, such as Wilson line breaking in the heterotic string or localized gauge fields on D-branes.
  • Chiral Matter: The paper discusses how chiral fermions, crucial for the SM, appear naturally through index theorems in compactification scenarios like Calabi-Yau manifolds.
  • Yukawa Couplings: The Yukawa textures inherent to the SM can be realized through overlap integrals of wavefunctions in extra dimensions, offering a natural framework for hierarchies observed in the SM.

Theoretical Implications and Future Directions

The exploration of string theory's landscape provides a fertile ground for addressing unanswered questions in particle physics, such as the Hierarchy Problem and neutrino masses. The concept of hierarchically small couplings emerges from non-perturbative effects, offering innovative pathways for model building beyond the conventional field-theoretic approaches. Moreover, the paper considers the ubiquitous presence of dark sectors in string theory, contributing significantly to our understanding of potential new physics.

Quantum Gravity Constraints

The paper underscores the crucial interplay between string theory and quantum gravity, which imposes constraints on effective field theories (EFTs) that can consistently couple to gravity. This relationship compels a reconsideration of global symmetries and helps refine our understanding of naturalness, as well as offering insights into phenomena like the absence of exact global symmetries in quantum gravity.

Contributions to the Field

String theory not only serves as a tool for addressing theoretical challenges within the SM but also stands as a potent framework for exploring the Swampland—a term denoting EFTs that cannot be consistently completed into a quantum theory of gravity. The ongoing research seeks to delimit the landscape of viable theories and to discern those that might occupy the Swampland, with profound implications for phenomenology and cosmology.

Conclusion

The review encapsulates the current understanding and open questions in reproducing the SM from string theory. The theoretical developments discussed reveal both the breadth of possibilities offered by string theory and the intricate challenges that remain. The insights gained extend beyond mere reproduction of the SM, offering a glimpse into the potential unification of all fundamental interactions, including gravity, within a single theoretical framework. Future advances are likely to drive profound shifts in both theoretical and experimental physics, giving shape to a deeper, possibly more unified, understanding of the fundamental laws governing our universe.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 14 tweets and received 157 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com