Papers
Topics
Authors
Recent
2000 character limit reached

Twisted Yang-Baxter sets, cohomology theory, and application to knots

Published 3 Jan 2024 in math.GT and math.QA | (2401.01533v2)

Abstract: We introduce twisted set-theoretic Yang-Baxter solutions and develop an associated cohomology theory, which extends the standard cohomology theory of Yang-Baxter solutions. By employing cocycles of twisted biquandles along with Alexander numbering, we construct state-sum invariants for knots and knotted surfaces. As an application, we use our approach to distinguish the $2$-twist spun trefoil from its reverse orientation, in line with prior findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. S. Ashihara. Fundamental biquandles of ribbon 2-knots and ribbon torus-knots with isomorphic fundamental quandles. J. Knot Theory Ramifications, 23(1):1450001, 17, 2014.
  2. A. Bartholomew and R. Fenn. Quaternionic invariants of virtual knots and links. J. Knot Theory Ramifications, 17(2):231–251, 2008.
  3. R. J. Baxter. Partition function of the eight-vertex lattice model. Ann. Physics, 70:193–228, 1972.
  4. Twisted quandle homology theory and cocycle knot invariants. Algebr. Geom. Topol., 2:95–135, 2002.
  5. Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles. Fund. Math., 184:31–54, 2004.
  6. Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans. Amer. Math. Soc., 355(10):3947–3989, 2003.
  7. Alexander numbering of knotted surface diagrams. Proc. Amer. Math. Soc., 128(12):3761–3771, 2000.
  8. J. S. Carter and M. Saito. Knotted surfaces and their diagrams, volume 55 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
  9. J. Ceniceros and S. Nelson. Virtual Yang-Baxter cocycle invariants. Trans. Amer. Math. Soc., 361(10):5263–5283, 2009.
  10. M. Elhamdadi and M. Singh. Colorings by biquandles and virtual biquandles. arXiv e-prints, page arXiv:2312.05663, Dec. 2023.
  11. Biquandles and virtual links. Topology Appl., 145(1-3):157–175, 2004.
  12. V. F. R. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2), 126(2):335–388, 1987.
  13. V. F. R. Jones. On knot invariants related to some statistical mechanical models. Pacific J. Math., 137(2):311–334, 1989.
  14. D. Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra, 23(1):37–65, 1982.
  15. Biquandle cohomology and state-sum invariants of links and surface-links. J. Knot Theory Ramifications, 27(11):1843016, 37, 2018.
  16. L. H. Kauffman. Virtual knot theory. European J. Combin., 20(7):663–690, 1999.
  17. L. H. Kauffman. Knots and physics, volume 53 of Series on Knots and Everything. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, fourth edition, 2013.
  18. Virtual biquandles. Fund. Math., 188:103–146, 2005.
  19. L. H. Kauffman and D. Radford. Bi-oriented quantum algebras, and a generalized Alexander polynomial for virtual links. In Diagrammatic morphisms and applications (San Francisco, CA, 2000), volume 318 of Contemp. Math., pages 113–140. Amer. Math. Soc., Providence, RI, 2003.
  20. S. V. Matveev. Distributive groupoids in knot theory. Mat. Sb. (N.S.), 119(161)(1):78–88, 160, 1982.
  21. J. H. Przytycki. Knots and distributive homology: from arc colorings to Yang-Baxter homology. In New ideas in low dimensional topology, volume 56 of Ser. Knots Everything, pages 413–488. World Sci. Publ., Hackensack, NJ, 2015.
  22. J. H. Przytycki and X. Wang. Equivalence of two definitions of set-theoretic Yang-Baxter homology and general Yang-Baxter homology. J. Knot Theory Ramifications, 27(7):1841013, 15, 2018.
  23. V. G. Turaev. The Yang-Baxter equation and invariants of links. Invent. Math., 92(3):527–553, 1988.
  24. C. N. Yang. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett., 19:1312–1315, 1967.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.