The Entangled Quantum Polynomial Hierarchy Collapses (2401.01453v1)
Abstract: We introduce the entangled quantum polynomial hierarchy $\mathsf{QEPH}$ as the class of problems that are efficiently verifiable given alternating quantum proofs that may be entangled with each other. We prove $\mathsf{QEPH}$ collapses to its second level. In fact, we show that a polynomial number of alternations collapses to just two. As a consequence, $\mathsf{QEPH} = \mathsf{QRG(1)}$, the class of problems having one-turn quantum refereed games, which is known to be contained in $\mathsf{PSPACE}$. This is in contrast to the unentangled quantum polynomial hierarchy $\mathsf{QPH}$, which contains $\mathsf{QMA(2)}$. We also introduce a generalization of the quantum-classical polynomial hierarchy $\mathsf{QCPH}$ where the provers send probability distributions over strings (instead of strings) and denote it by $\mathsf{DistributionQCPH}$. Conceptually, this class is intermediate between $\mathsf{QCPH}$ and $\mathsf{QPH}$. We prove $\mathsf{DistributionQCPH} = \mathsf{QCPH}$, suggesting that only quantum superposition (not classical probability) increases the computational power of these hierarchies. To prove this equality, we generalize a game-theoretic result of Lipton and Young (1994) which says that the provers can send distributions that are uniform over a polynomial-size support. We also prove the analogous result for the polynomial hierarchy, i.e., $\mathsf{DistributionPH} = \mathsf{PH}$. These results also rule out certain approaches for showing $\mathsf{QPH}$ collapses. Finally, we show that $\mathsf{PH}$ and $\mathsf{QCPH}$ are contained in $\mathsf{QPH}$, resolving an open question of Gharibian et al. (2022).
- Computational Complexity: A Modern Approach. Cambridge University Press, 2009. doi:10.1017/CBO9780511804090.
- Quantum Polynomial Hierarchies: Karp-Lipton, error reduction, and lower bounds. To appear.
- The Acrobatics of π‘π°π―π‘π°π―\mathsf{BQP}sansserif_BQP. In 37th Computational Complexity Conference (CCC 2022), Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1β20:17, 2022. doi:10.4230/LIPIcs.CCC.2022.20.
- Ingo AlthΓΆfer. On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications, 199:339β355, 1994. Special Issue Honoring Ingram Olkin. doi:10.1016/0024-3795(94)90357-3.
- Quantum fingerprinting. Physical Review Letters, 87(16):167902, 2001. doi:10.1103/PhysRevLett.87.167902.
- Quantum Merlin-Arthur and proofs without relative phase, 2023. arXiv:2306.13247.
- A Collapsible Polynomial Hierarchy for Promise Problems, 2023. arXiv:2311.12228.
- Making Games Short (Extended Abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 506β516, New York, NY, USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258644.
- A Game-Theoretic Classification of Interactive Complexity Classes. In Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 227β237, 1995. doi:10.1109/SCT.1995.514861.
- Hardness of approximation for quantum problems. In International Colloquium on Automata, Languages, and Programming, pages 387β398. Springer, 2012. doi:10.1007/978-3-642-31594-7_33.
- Quantum generalizations of the Polynomial Hierarchy with applications to π°π¬π β’(π€)π°π¬π 2\mathsf{QMA(2)}sansserif_QMA ( sansserif_2 ). Computational Complexity, 31(2):13, 2022. doi:10.1007/s00037-022-00231-8.
- Quantum interactive proofs with competing provers. In STACS 2005: 22nd Annual Symposium on Theoretical Aspects of Computer Science, pages 605β616. Springer, 2005. doi:10.1007/978-3-540-31856-9_50.
- Toward a General Theory of Quantum Games. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pages 565ββ574, New York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/1250790.1250873.
- Parallel Approximation of Min-Max Problems. Computational Complexity, 22:385β428, 2013. doi:10.1007/s00037-013-0065-9.
- Complexity limitations on one-turn quantum refereed games. Theory of Computing Systems, 67(2):383β412, 2023. doi:10.1007/s00224-022-10105-9.
- Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization. J. ACM, 60(1), 2013. doi:10.1145/2432622.2432625.
- π°π¨π―=π―π²π―π π’π€π°π¨π―π―π²π―π π’π€\mathsf{QIP}=\mathsf{PSPACE}sansserif_QIP = sansserif_PSPACE. Journal of the ACM (JACM), 58(6):1β27, 2011. doi:10.1145/2049697.2049704.
- Parallel Approximation of Non-interactive Zero-sum Quantum Games. In 24th Annual IEEE Conference on Computational Complexity, pages 243β253, 2009. doi:10.1109/CCC.2009.26.
- The power of unentangled quantum proofs with non-negative amplitudes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 1629ββ1642, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585248.
- Total Functions in the Polynomial Hierarchy. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages 44:1β44:18, 2021. doi:10.4230/LIPIcs.ITCS.2021.44.
- Classical and Quantum Computation. American Mathematical Soc., 2002. doi:10.1090/gsm/047.
- Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 608β617, 2000. doi:10.1145/335305.335387.
- Clemens Lautemann. π‘π―π―π‘π―π―\mathsf{BPP}sansserif_BPP and the polynomial hierarchy. Information Processing Letters, 17(4):215β217, 1983. doi:10.1016/0020-0190(83)90044-3.
- Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages 734β740, 1994. doi:10.1145/195058.195447.
- The equivalence problem for regular expressions with squaring requires exponential space. In 13th Annual Symposium on Switching and Automata Theory (SWAT 1972), pages 125β129, 1972. doi:10.1109/SWAT.1972.29.
- Quantum ArthurβMerlin Games. Computational Complexity, 14(2):122β152, 2005. doi:10.1007/s00037-005-0194-x.
- Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.
- Adi Shamir. π¨π―=π―π²π―π π’π€π¨π―π―π²π―π π’π€\mathsf{IP}=\mathsf{PSPACE}sansserif_IP = sansserif_PSPACE. J. ACM, 39(4):869β877, 1992. doi:10.1145/146585.146609.
- Maurice Sion. On General Minimax Theorems. Pacific Journal of Mathematics, 1958. doi:10.2140/pjm.1958.8.171.
- Michael Sipser. A Complexity Theoretic Approach to Randomness. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 330β335. Association for Computing Machinery, 1983. doi:10.1145/800061.808762.
- LarryΒ J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3(1):1β22, 1976. doi:10.1016/0304-3975(76)90061-X.
- Lieuwe Vinkhuijzen. A Quantum Polynomial Hierarchy and a Simple Proof of Vyalyiβs Theorem. Masterβs thesis, Leiden University, 2018. URL: https://theses.liacs.nl/1505.
- John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. doi:10.1017/9781316848142.
- Tomoyuki Yamakami. Quantum ππ―ππ―\mathsf{NP}sansserif_NP and a Quantum Hierarchy. In Foundations of Information Technology in the Era of Networking and Mobile Computing, volumeΒ 96 of IFIP β The International Federation for Information Processing, pages 323β336, Boston, MA, 2002. Springer. doi:10.1007/978-0-387-35608-2_27.