Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Entangled Quantum Polynomial Hierarchy Collapses (2401.01453v1)

Published 2 Jan 2024 in quant-ph and cs.CC

Abstract: We introduce the entangled quantum polynomial hierarchy $\mathsf{QEPH}$ as the class of problems that are efficiently verifiable given alternating quantum proofs that may be entangled with each other. We prove $\mathsf{QEPH}$ collapses to its second level. In fact, we show that a polynomial number of alternations collapses to just two. As a consequence, $\mathsf{QEPH} = \mathsf{QRG(1)}$, the class of problems having one-turn quantum refereed games, which is known to be contained in $\mathsf{PSPACE}$. This is in contrast to the unentangled quantum polynomial hierarchy $\mathsf{QPH}$, which contains $\mathsf{QMA(2)}$. We also introduce a generalization of the quantum-classical polynomial hierarchy $\mathsf{QCPH}$ where the provers send probability distributions over strings (instead of strings) and denote it by $\mathsf{DistributionQCPH}$. Conceptually, this class is intermediate between $\mathsf{QCPH}$ and $\mathsf{QPH}$. We prove $\mathsf{DistributionQCPH} = \mathsf{QCPH}$, suggesting that only quantum superposition (not classical probability) increases the computational power of these hierarchies. To prove this equality, we generalize a game-theoretic result of Lipton and Young (1994) which says that the provers can send distributions that are uniform over a polynomial-size support. We also prove the analogous result for the polynomial hierarchy, i.e., $\mathsf{DistributionPH} = \mathsf{PH}$. These results also rule out certain approaches for showing $\mathsf{QPH}$ collapses. Finally, we show that $\mathsf{PH}$ and $\mathsf{QCPH}$ are contained in $\mathsf{QPH}$, resolving an open question of Gharibian et al. (2022).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Computational Complexity: A Modern Approach. Cambridge University Press, 2009. doi:10.1017/CBO9780511804090.
  2. Quantum Polynomial Hierarchies: Karp-Lipton, error reduction, and lower bounds. To appear.
  3. The Acrobatics of 𝖑𝖰𝖯𝖑𝖰𝖯\mathsf{BQP}sansserif_BQP. In 37th Computational Complexity Conference (CCC 2022), Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:17, 2022. doi:10.4230/LIPIcs.CCC.2022.20.
  4. Ingo AlthΓΆfer. On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications, 199:339–355, 1994. Special Issue Honoring Ingram Olkin. doi:10.1016/0024-3795(94)90357-3.
  5. Quantum fingerprinting. Physical Review Letters, 87(16):167902, 2001. doi:10.1103/PhysRevLett.87.167902.
  6. Quantum Merlin-Arthur and proofs without relative phase, 2023. arXiv:2306.13247.
  7. A Collapsible Polynomial Hierarchy for Promise Problems, 2023. arXiv:2311.12228.
  8. Making Games Short (Extended Abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 506–516, New York, NY, USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258644.
  9. A Game-Theoretic Classification of Interactive Complexity Classes. In Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 227–237, 1995. doi:10.1109/SCT.1995.514861.
  10. Hardness of approximation for quantum problems. In International Colloquium on Automata, Languages, and Programming, pages 387–398. Springer, 2012. doi:10.1007/978-3-642-31594-7_33.
  11. Quantum generalizations of the Polynomial Hierarchy with applications to 𝖰𝖬𝖠⁒(𝟀)𝖰𝖬𝖠2\mathsf{QMA(2)}sansserif_QMA ( sansserif_2 ). Computational Complexity, 31(2):13, 2022. doi:10.1007/s00037-022-00231-8.
  12. Quantum interactive proofs with competing provers. In STACS 2005: 22nd Annual Symposium on Theoretical Aspects of Computer Science, pages 605–616. Springer, 2005. doi:10.1007/978-3-540-31856-9_50.
  13. Toward a General Theory of Quantum Games. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pages 565––574, New York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/1250790.1250873.
  14. Parallel Approximation of Min-Max Problems. Computational Complexity, 22:385–428, 2013. doi:10.1007/s00037-013-0065-9.
  15. Complexity limitations on one-turn quantum refereed games. Theory of Computing Systems, 67(2):383–412, 2023. doi:10.1007/s00224-022-10105-9.
  16. Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization. J. ACM, 60(1), 2013. doi:10.1145/2432622.2432625.
  17. 𝖰𝖨𝖯=𝖯𝖲𝖯𝖠𝖒𝖀𝖰𝖨𝖯𝖯𝖲𝖯𝖠𝖒𝖀\mathsf{QIP}=\mathsf{PSPACE}sansserif_QIP = sansserif_PSPACE. Journal of the ACM (JACM), 58(6):1–27, 2011. doi:10.1145/2049697.2049704.
  18. Parallel Approximation of Non-interactive Zero-sum Quantum Games. In 24th Annual IEEE Conference on Computational Complexity, pages 243–253, 2009. doi:10.1109/CCC.2009.26.
  19. The power of unentangled quantum proofs with non-negative amplitudes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 1629––1642, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585248.
  20. Total Functions in the Polynomial Hierarchy. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages 44:1–44:18, 2021. doi:10.4230/LIPIcs.ITCS.2021.44.
  21. Classical and Quantum Computation. American Mathematical Soc., 2002. doi:10.1090/gsm/047.
  22. Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 608–617, 2000. doi:10.1145/335305.335387.
  23. Clemens Lautemann. 𝖑𝖯𝖯𝖑𝖯𝖯\mathsf{BPP}sansserif_BPP and the polynomial hierarchy. Information Processing Letters, 17(4):215–217, 1983. doi:10.1016/0020-0190(83)90044-3.
  24. Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages 734–740, 1994. doi:10.1145/195058.195447.
  25. The equivalence problem for regular expressions with squaring requires exponential space. In 13th Annual Symposium on Switching and Automata Theory (SWAT 1972), pages 125–129, 1972. doi:10.1109/SWAT.1972.29.
  26. Quantum Arthur–Merlin Games. Computational Complexity, 14(2):122–152, 2005. doi:10.1007/s00037-005-0194-x.
  27. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.
  28. Adi Shamir. 𝖨𝖯=𝖯𝖲𝖯𝖠𝖒𝖀𝖨𝖯𝖯𝖲𝖯𝖠𝖒𝖀\mathsf{IP}=\mathsf{PSPACE}sansserif_IP = sansserif_PSPACE. J. ACM, 39(4):869–877, 1992. doi:10.1145/146585.146609.
  29. Maurice Sion. On General Minimax Theorems. Pacific Journal of Mathematics, 1958. doi:10.2140/pjm.1958.8.171.
  30. Michael Sipser. A Complexity Theoretic Approach to Randomness. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 330–335. Association for Computing Machinery, 1983. doi:10.1145/800061.808762.
  31. LarryΒ J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3(1):1–22, 1976. doi:10.1016/0304-3975(76)90061-X.
  32. Lieuwe Vinkhuijzen. A Quantum Polynomial Hierarchy and a Simple Proof of Vyalyi’s Theorem. Master’s thesis, Leiden University, 2018. URL: https://theses.liacs.nl/1505.
  33. John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. doi:10.1017/9781316848142.
  34. Tomoyuki Yamakami. Quantum 𝖭𝖯𝖭𝖯\mathsf{NP}sansserif_NP and a Quantum Hierarchy. In Foundations of Information Technology in the Era of Networking and Mobile Computing, volumeΒ 96 of IFIP β€” The International Federation for Information Processing, pages 323–336, Boston, MA, 2002. Springer. doi:10.1007/978-0-387-35608-2_27.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com