Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Polynomial Hierarchies: Karp-Lipton, error reduction, and lower bounds (2401.01633v1)

Published 3 Jan 2024 in cs.CC and quant-ph

Abstract: The Polynomial-Time Hierarchy ($\mathsf{PH}$) is a staple of classical complexity theory, with applications spanning randomized computation to circuit lower bounds to ''quantum advantage'' analyses for near-term quantum computers. Quantumly, however, despite the fact that at least \emph{four} definitions of quantum $\mathsf{PH}$ exist, it has been challenging to prove analogues for these of even basic facts from $\mathsf{PH}$. This work studies three quantum-verifier based generalizations of $\mathsf{PH}$, two of which are from [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022] and use classical strings ($\mathsf{QCPH}$) and quantum mixed states ($\mathsf{QPH}$) as proofs, and one of which is new to this work, utilizing quantum pure states ($\mathsf{pureQPH}$) as proofs. We first resolve several open problems from [GSSSY22], including a collapse theorem and a Karp-Lipton theorem for $\mathsf{QCPH}$. Then, for our new class $\mathsf{pureQPH}$, we show one-sided error reduction for $\mathsf{pureQPH}$, as well as the first bounds relating these quantum variants of $\mathsf{PH}$, namely $\mathsf{QCPH}\subseteq \mathsf{pureQPH} \subseteq \mathsf{EXP}{\mathsf{PP}}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. “The Computational Complexity of Linear Optics” In Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11 New York, NY, USA: ACM, 2011, pp. 333–342 DOI: 10.1145/1993636.1993682
  2. “The Pursuit of Uniqueness: Extending Valiant-Vazirani Theorem to the Probabilistic and Quantum Settings” In Quantum 6 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 668 DOI: 10.22331/q-2022-03-17-668
  3. “On the implausibility of classical client blind quantum computing” In CoRR abs/1704.08482, 2017 arXiv: http://arxiv.org/abs/1704.08482
  4. “A Full Characterization of Quantum Advice” In SIAM J. Comput. 43.3, 2014, pp. 1131–1183 DOI: 10.1137/110856939
  5. Scott Aaronson, DeVon Ingram and William Kretschmer “The Acrobatics of BQP” In 37th Computational Complexity Conference (CCC 2022) 234, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 20:1–20:17 DOI: 10.4230/LIPIcs.CCC.2022.20
  6. Dorit Aharonov, Alexei Kitaev and Noam Nisan “Quantum Circuits with Mixed States” In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98 New York, NY, USA: Association for Computing Machinery, 1998, pp. 20–30 DOI: 10.1145/276698.276708
  7. “If NP has polynomial-size circuits, then MA = AM” In Theoretical Computer Science 137.2, 1995, pp. 279–282 DOI: https://doi.org/10.1016/0304-3975(95)91133-B
  8. “Oracles and Queries That Are Sufficient for Exact Learning” In Electron. Colloquium Comput. Complex. TR95-015, 1995 ECCC: https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-015/index.html
  9. “On the Complexity and Verification of Quantum Random Circuit Sampling” In Nature Physics 15.2 Nature Publishing Group, 2019, pp. 159–163 DOI: 10.1038/s41567-018-0318-2
  10. Lennart Bittel, Sevag Gharibian and Martin Kliesch “The Optimal Depth of Variational Quantum Algorithms Is QCMA-Hard to Approximate” In 38th Computational Complexity Conference (CCC 2023) 264, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 34:1–34:24 DOI: 10.4230/LIPIcs.CCC.2023.34
  11. Michael J. Bremner, Richard Jozsa and Dan J. Shepherd “Classical Simulation of Commuting Quantum Computations Implies Collapse of the Polynomial Hierarchy” In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467.2126 Royal Society, 2010, pp. 459–472 DOI: 10.1098/rspa.2010.0301
  12. Jin-yi Cai “S2p⊆Z⁢P⁢PNPsubscriptsuperscript𝑆p2𝑍𝑃superscript𝑃NPS^{\mbox{p}}_{\mbox{2}}\subseteq ZPP^{\mbox{NP}}italic_S start_POSTSUPERSCRIPT p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⊆ italic_Z italic_P italic_P start_POSTSUPERSCRIPT NP end_POSTSUPERSCRIPT” In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA IEEE Computer Society, 2001, pp. 620–629 DOI: 10.1109/SFCS.2001.959938
  13. Ran Canetti “More on BPP and the Polynomial-Time Hierarchy” In Inf. Process. Lett. 57.5, 1996, pp. 237–241 DOI: 10.1016/0020-0190(96)00016-6
  14. Venkatesan T. Chakaravarthy and Sambuddha Roy “Oblivious Symmetric Alternation”, STACS’06 Marseille, France: Springer-Verlag, 2006, pp. 230–241 DOI: 10.1007/11672142˙18
  15. Chirag Falor, Shu Ge and Anand Natarajan “A Collapsible Polynomial Hierarchy for Promise Problems” In CoRR abs/2311.12228, 2023 DOI: 10.48550/ARXIV.2311.12228
  16. Merrick Furst, James B. Saxe and Michael Sipser “Parity, Circuits, and the Polynomial-Time Hierarchy” In Mathematical systems theory 17.1, 1984, pp. 13–27 DOI: 10.1007/BF01744431
  17. “Hardness of Approximation for Quantum Problems” In Automata, Languages, and Programming, Lecture Notes in Computer Science Berlin, Heidelberg: Springer, 2012, pp. 387–398 DOI: 10.1007/978-3-642-31594-7˙33
  18. Oded Goldreich “On Promise Problems: A Survey” In Theoretical Computer Science: Essays in Memory of Shimon Even, Lecture Notes in Computer Science Berlin, Heidelberg: Springer, 2006, pp. 254–290 DOI: 10.1007/11685654˙12
  19. “Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)” In computational complexity 31.2, 2022, pp. 13 DOI: 10.1007/s00037-022-00231-8
  20. “The Entangled Quantum Polynomial Hierarchy Collapses” In CoRR, 2023
  21. Aram W. Harrow and Ashley Montanaro “Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization” In Journal of the ACM 60.1, 2013, pp. 3:1–3:43 DOI: 10.1145/2432622.2432625
  22. “Quantum Search-To-Decision Reductions and the State Synthesis Problem” In 37th Computational Complexity Conference (CCC 2022) 234, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 5:1–5:19 DOI: 10.4230/LIPIcs.CCC.2022.5
  23. J. Lockhart and C. E. González-Guillén “Quantum State Isomorphism” In arXiv preprint arXiv:1709.09622, 2017 arXiv:1709.09622
  24. “Parallel Approximation of Non-interactive Zero-sum Quantum Games” In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009 IEEE Computer Society, 2009, pp. 243–253 DOI: 10.1109/CCC.2009.26
  25. Richard M. Karp and Richard J. Lipton “Some Connections Between Nonuniform and Uniform Complexity Classes” In Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80 New York, NY, USA: ACM, 1980, pp. 302–309 DOI: 10.1145/800141.804678
  26. Hirotada Kobayashi, Keiji Matsumoto and Tomoyuki Yamakami “Quantum Certificate Verification: Single versus Multiple Quantum Certificates” arXiv, 2001 DOI: 10.48550/arXiv.quant-ph/0110006
  27. “New Collapse Consequences of NP Having Small Circuits” In SIAM J. Comput. 28.1, 1998, pp. 311–324 DOI: 10.1137/S0097539795296206
  28. Clemens Lautemann “BPP and the Polynomial Hierarchy” In Information Processing Letters 17.4, 1983, pp. 215–217 DOI: 10.1016/0020-0190(83)90044-3
  29. Florian Mintert, Marek Kuś and Andreas Buchleitner “Concurrence of Mixed Multipartite Quantum States” In Physical Review Letters 95.26 American Physical Society, 2005, pp. 260502 DOI: 10.1103/PhysRevLett.95.260502
  30. “Symmetric Alternation Captures BPP” In Comput. Complex. 7.2, 1998, pp. 152–162 DOI: 10.1007/S000370050007
  31. Michael Sipser “A Complexity Theoretic Approach to Randomness” In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83 New York, NY, USA: Association for Computing Machinery, 1983, pp. 330–335 DOI: 10.1145/800061.808762
  32. Larry J. Stockmeyer “The Polynomial-Time Hierarchy” In Theoretical Computer Science 3.1, 1976, pp. 1–22 DOI: http://dx.doi.org/10.1016/0304-3975(76)90061-X
  33. “Testing Matrix Product States” arXiv, 2022 DOI: 10.48550/arXiv.2201.01824
  34. Seinosuke Toda “PP Is as Hard as the Polynomial-Time Hierarchy” In SIAM Journal on Computing 20.5 Society for Industrial and Applied Mathematics, 1991, pp. 865–877 DOI: 10.1137/0220053
  35. “NP Is as Easy as Detecting Unique Solutions” In Theoretical Computer Science 47, 1986, pp. 85–93 DOI: 10.1016/0304-3975(86)90135-0
  36. Tomoyuki Yamakami “Quantum NP and a Quantum Hierarchy” In Foundations of Information Technology in the Era of Network and Mobile Computing: IFIP 17th World Computer Congress — TC1 Stream / 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002) August 25–30, 2002, Montréal, Québec, Canada, IFIP — The International Federation for Information Processing Boston, MA: Springer US, 2002, pp. 323–336 DOI: 10.1007/978-0-387-35608-2˙27
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Avantika Agarwal (3 papers)
  2. Sevag Gharibian (34 papers)
  3. Venkata Koppula (2 papers)
  4. Dorian Rudolph (8 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.