Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hamiltonian Learning in Quantum Field Theories

Published 2 Jan 2024 in cond-mat.quant-gas and quant-ph | (2401.01308v1)

Abstract: We discuss Hamiltonian learning in quantum field theories as a protocol for systematically extracting the operator content and coupling constants of effective field theory Hamiltonians from experimental data. Learning the Hamiltonian for varying spatial measurement resolutions gives access to field theories at different energy scales, and allows to learn a flow of Hamiltonians reminiscent of the renormalization group. Our method, which we demonstrate in both theoretical studies and available data from a quantum gas experiment, promises new ways of addressing the emergence of quantum field theories in quantum simulation experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. X.-L. Qi and D. Ranard, Quantum 3, 159 (2019).
  2. A. Browaeys and T. Lahaye, Nature Physics 16, 132 (2020).
  3. S. Kuhr, National Science Review 3, 170 (2016).
  4. S. Weinberg, The quantum theory of fields (Cambridge university press, 1995).
  5. A. Altland and B. D. Simons, Condensed matter field theory (Cambridge university press, 2010).
  6. S. Sachdev, Quantum Phases of Matter (Cambridge University Press, 2023).
  7. E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
  8. C. W. Gardiner and P. Zoller, Quantum World Of Ultra-cold Atoms And Light, The-Book Iii: Ultra-cold Atoms, Vol. 5 (World Scientific, 2017).
  9. M. E. Fisher, Reviews of Modern Physics 70, 653 (1998).
  10. T. Giamarchi, Quantum physics in one dimension, Vol. 121 (Clarendon press, 2003).
  11. J. B. Kogut, Reviews of Modern Physics 51, 659 (1979).
  12. S. Coleman, Annals of Physics 101, 239 (1976).
  13. E. A. Calzetta and B.-L. B. Hu, Nonequilibrium quantum field theory (Cambridge University Press, 2009).
  14. P. Calabrese and J. Cardy, Journal of statistical mechanics: theory and experiment 2004, P06002 (2004).
Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.