Papers
Topics
Authors
Recent
2000 character limit reached

Phase space maximal entropy random walk: Langevin-like ensembles of physical trajectories (2401.01239v4)

Published 2 Jan 2024 in cond-mat.stat-mech

Abstract: As written by statistician George Box "All models are wrong, but some are useful", standard diffusion derivation or Feynman path ensembles use nonphysical infinite velocity/kinetic energy nowhere differentiable trajectories - what seems wrong, might be only our approximation to simplify mathematics. This article introduces some basic tools to investigate this issue. To consider ensembles of more physical finite velocity trajectories, we can work in $(x,v)$ phase space like in Langevin equation with velocity controlling spatial steps, here also controlled with spatial potential $V(x)$. There are derived and compared 4 approaches to predict stationary probability distributions: using Boltzmann ensemble of steps/points in space (GRW - generic random walk) or in phase space (psGRW), and analogously Boltzmann ensemble of paths in space (MERW - maximal entropy random walk) and in phase space (psMERW), also generalized to L{\'e}vy flights. Path ensembles generally have much stronger Anderson-like localization, MERW has stationary distribution exactly as quantum ground state. Proposed novel MERW in phase space has some slight differences, which might be distinguished experimentally. For example for 1D infinite potential well: $\rho=1$ stationary distribution for step ensemble, $\rho\sim \sin2$ for path ensemble (as in QM), and $\rho\sim \sin$ for proposed smooth path ensembles - more frequently approaching the barriers due to randomly gained velocity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Reviews of Modern Physics, vol. 20, no. 2, p. 367, 1948.
  2. P. Langevin, “Sur la théorie du mouvement brownien,” Compt. Rendus, vol. 146, pp. 530–533, 1908.
  3. J. Zambrini, “Euclidean quantum mechanics,” Physical Review A, vol. 35, no. 9, p. 3631, 1987.
  4. Z. Burda, J. Duda, J.-M. Luck, and B. Waclaw, “Localization of the maximal entropy random walk,” Physical review letters, vol. 102, no. 16, p. 160602, 2009.
  5. A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom, and A. Yazdani, “Visualizing critical correlations near the metal-insulator transition in Ga1-xMnxAs,” science, vol. 327, no. 5966, pp. 665–669, 2010.
  6. J. Duda, “Diffusion models for atomic scale electron currents in semiconductor, pn junction,” arXiv preprint arXiv:2112.12557, 2021.
  7. V. V. Nesvizhevsky, H. G. Börner, A. K. Petukhov, H. Abele, S. Baeßler, F. J. Rueß, T. Stöferle, A. Westphal, A. M. Gagarski, G. A. Petrov et al., “Quantum states of neutrons in the earth’s gravitational field,” Nature, vol. 415, no. 6869, pp. 297–299, 2002.
  8. D. M. Harris, J. Moukhtar, E. Fort, Y. Couder, and J. W. Bush, “Wavelike statistics from pilot-wave dynamics in a circular corral,” Physical Review E, vol. 88, no. 1, p. 011001, 2013.
  9. F. A. Berezin, “Feynman path integrals in a phase space,” Soviet Physics Uspekhi, vol. 23, no. 11, p. 763, 1980.
  10. J.-P. Bouchaud, “Quantum mechanics with a nonzero quantum correlation time,” Physical Review A, vol. 96, no. 5, p. 052116, 2017.
  11. W. Heitmann et al., “Superluminal photonic tunneling and quantum electronics,” Progress in Quantum Electronics, vol. 21, no. 2, pp. 81–108, 1997.
  12. G. Nimtz, “Tunneling confronts special relativity,” Foundations of Physics, vol. 41, pp. 1193–1199, 2011.
  13. S. Sekatskii and V. Letokhov, “Electron tunneling time measurement by field-emission microscopy,” Physical Review B, vol. 64, no. 23, p. 233311, 2001.
  14. J. Duda, “Extended maximal entropy random walk,” Ph.D. dissertation, Jagiellonian University, 2012. [Online]. Available: http://www.fais.uj.edu.pl/documents/41628/d63bc0b7-cb71-4eba-8a5a-d974256fd065
  15. M. Faber, “Stationary schrodinger equation and darwin term from maximal entropy random walk,” Particles, vol. 7, no. 1, pp. 25–39, 2024, preprint: https://arxiv.org/abs/2304.02368.
  16. P. Lévy, “L’addition des variables aléatoires définies sur une circonférence,” Bulletin de la Société mathématique de France, vol. 67, pp. 1–41, 1939.
  17. N. Laskin, “Fractional schrödinger equation,” Physical Review E, vol. 66, no. 5, p. 056108, 2002.
  18. S. Liu, Y. Zhang, B. A. Malomed, and E. Karimi, “Experimental realisations of the fractional schrödinger equation in the temporal domain,” Nature Communications, vol. 14, no. 1, p. 222, 2023.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 9 tweets with 652 likes about this paper.