Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Homogenization and nonselfadjoint spectral optimization for dissipative Maxwell eigenproblems (2401.01049v2)

Published 2 Jan 2024 in math.AP, math.OC, and math.SP

Abstract: The homogenization of eigenvalues of non-Hermitian Maxwell operators is studied by the H-convergence method. It is assumed that the Maxwell systems are equipped with suitable m-dissipative boundary conditions, namely, with Leontovich or generalized impedance boundary conditions of the form $n \times E = Z [(n \times H )\times n ] $. We show that, for a wide class of impedance operators $Z$, the nonzero spectrum of the corresponding Maxwell operator is discrete. To this end, a new continuous embedding theorem for domains of Maxwell operators is obtained. We prove the convergence of eigenvalues to an eigenvalue of a homogenized Maxwell operator under the assumption of the H-convergence of the material tensor-fields. This result is used then to prove the existence of optimizers for eigenvalue optimization problems and the existence of an eigenvalue-free region around zero. As applications, connections with the quantum optics problem of the design of high-Q resonators are discussed, and a new way of the quantification of the unique (and nonunique) continuation property is suggested.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: