Critical line of exponents, scattering theories for a weighted gradient system of semilinear wave equations (2401.00706v1)
Abstract: In this paper, we consider the following Cauchy problem of a weighted gradient system of semilinear wave equations \begin{equation*} \left{ \begin{array}{lll} u_{tt}-\Delta u=\lambda |u|{\alpha}|v|{\beta+2}u,\quad v_{tt}-\Delta v=\mu |u|{\alpha+2}|v|{\beta}v,\quad x\in \mathbb{R}d,\ t\in \mathbb{R},\ u(x,0)=u_{10}(x),\ u_t(x,0)=u_{20}(x),\quad v(x,0)=v_{10}(x),\ v_t(x,0)=v_{20}(x),\quad x\in \mathbb{R}d. \end{array}\right. \end{equation*} Here $d\geq 3$, $\lambda, \mu\in \mathbb{R}$, $\alpha, \beta\geq 0$, $(u_{10},u_{20})$ and $(v_{10},v_{20})$ belong to $H1(\mathbb{R}d)\oplus L2(\mathbb{R}d)$ or $\dot{H}1(\mathbb{R}d)\oplus L2(\mathbb{R}d)$ or $\dot{H}{\gamma}(\mathbb{R}d)\oplus H{\gamma-1}(\mathbb{R}d)$ for some $\gamma>1$. Under certain assumptions, we establish the local wellposedness of the $H1\oplus H1$-solution, $\dot{H}1\oplus \dot{H}1$-solution and $\dot{H}{\gamma}\oplus \dot{H}{\gamma}$-solution of the system with different types of initial data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.