Evidence for $π$-shifted Cooper quartets and few-mode transport in PbTe nanowire three-terminal Josephson junctions (2312.17703v3)
Abstract: Josephson junctions are typically characterized by a single phase difference across two superconductors. This conventional two-terminal Josephson junction can be generalized to a multi-terminal device where the Josephson energy contains terms with contributions from multiple independent phase variables. Such multi-terminal Josephson junctions (MTJJs) are being considered as platforms for engineering effective Hamiltonians with non-trivial topologies, such as Weyl crossings and higher-order Chern numbers. These prospects rely on the ability to create MTJJs with non-classical multi-terminal couplings in which only a few quantum modes are populated. Here, we demonstrate these requirements in a three-terminal Josephson junction fabricated on selective-area-grown (SAG) PbTe nanowires. We observe signatures of a $\pi$-shifted Josephson effect, consistent with inter-terminal couplings mediated by four-particle quantum states called Cooper quartets. We further observe supercurrent co-existent with a non-monotonic evolution of the conductance with gate voltage, indicating transport mediated by a few quantum modes in both two- and three-terminal devices.
- Josephson, B. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).
- Production of nonlocal quartets and phase-sensitive entanglement in a superconducting beam splitter. Phys. Rev. Lett. 106, 257005 (2011).
- Proposal for detecting the π𝜋\piitalic_π-shifted cooper quartet supercurrent. Phys. Rev. Res. 5, 033124 (2023).
- Quantum interferometer for quartets in superconducting three-terminal josephson junctions. Phys. Rev. B 107, L161405 (2023).
- Magneto-interferometry of multiterminal josephson junctions (2023). eprint 2311.12964.
- Jonckheere, T. et al. Quartet currents in a biased three-terminal diffusive josephson junction. Phys. Rev. B 108, 214517 (2023).
- Multi-terminal Josephson junctions as topological matter. Nat. Commun. 7, 11167 (2016).
- J. S. Meyer & Houzet, M. Nontrivial Chern Numbers in Three-Terminal Josephson Junctions. Phys. Rev. Lett. 119, 136807 (2017).
- Topological Andreev bands in three-terminal Josephson junctions. Phys. Rev. B 96, 161406(R) (2017).
- Weyl nodes in Andreev spectra of multiterminal Josephson junctions: Chern numbers, conductances, and supercurrents. Phys. Rev. B 97, 035443 (2018).
- Non-abelian monopoles in the multiterminal josephson effect. Phys. Rev. B 105, L241404 (2022).
- Topological transconductance quantization in a four-terminal josephson junction. Phys. Rev. B 95, 075417 (2017).
- Draelos, A. W. et al. Supercurrent Flow in Multiterminal Graphene Josephson Junctions. Nano Lett. 19, 1039–1043 (2019).
- Cohen, Y. et al. Nonlocal supercurrent of quartets in a three-terminal Josephson junction. Proc. Natl. Acad. Sci. U.S.A. 115, 6991–6994 (2018).
- Pankratova, N. et al. Multiterminal josephson effect. Phys. Rev. X 10, 031051 (2020).
- Transport studies in a gate-tunable three-terminal josephson junction. Phys. Rev. B 101, 054510 (2020).
- Arnault, E. G. et al. Multiterminal inverse ac josephson effect. Nano Letters 21, 9668–9674 (2021).
- Graziano, G. V. et al. Selective control of conductance modes in multi-terminal josephson junctions. Nature Communications 2022 13:1 13, 1–8 (2022).
- Arnault, E. G. et al. Dynamical stabilization of multiplet supercurrents in multiterminal josephson junctions. Nano Letters 22, 7073–7079 (2022). PMID: 35997531.
- Huang, K.-F. et al. Evidence for 4e charge of cooper quartets in a biased multi-terminal graphene-based josephson junction. Nature Communications 13, 3032 (2022).
- Gupta, M. et al. Gate-tunable superconducting diode effect in a three-terminal josephson device. Nature Communications 2023 14:1 14, 1–8 (2023).
- Jung, J. et al. Selective area growth of pbte nanowire networks on inp. Advanced Functional Materials 32, 2208974 (2022).
- On possibility of the spontaneous magnetic flux in a josephson junction containing magnetic impurities. Solid State Communications 25, 1053–1057 (1978).
- Weides, M. et al. 0- π𝜋\piitalic_π josephson tunnel junctions with ferromagnetic barrier. Physical review letters 97, 247001 (2006).
- Josephson interferometry and shapiro step measurements of superconductor-ferromagnet-superconductor 0- π𝜋\piitalic_π junctions. Physical Review B 74, 020503 (2006).
- Kang, K. et al. van der waals π𝜋\piitalic_π josephson junctions. Nano Letters 22, 5510–5515 (2022).
- Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–5 (2005).
- Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
- Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
- Lutchyn, R. M. et al. Majorana zero modes in superconductor-semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).
- Laroche, D. et al. Observation of the 4π𝜋\piitalic_π-periodic Josephson effect in indium arsenide nanowires. Nat. Commun. 10, 245 (2019).
- Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. (N.Y.) 303, 2–30 (2003).
- Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
- Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).
- Mourik, V. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).
- Deng, M. et al. Anomalous zero-bias conductance peak in a nb–insb nanowire–nb hybrid device. Nano letters 12, 6414–6419 (2012).
- Albrecht, S. M. et al. Exponential protection of zero modes in majorana islands. Nature 531, 206–209 (2016).
- Gül, Ö. et al. Ballistic majorana nanowire devices. Nature nanotechnology 13, 192–197 (2018).
- Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).
- Kayyalha, M. et al. Absence of evidence for chiral majorana modes in quantum anomalous hall-superconductor devices. Science 367, 64–67 (2020).
- Yu, P. et al. Non-majorana states yield nearly quantized conductance in proximatized nanowires. Nature Physics 17, 482–488 (2021).
- Valentini, M. et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable andreev states. Science 373, 82–88 (2021).
- Jiang, Y. et al. Zero-bias conductance peaks at zero applied magnetic field due to stray fields from integrated micromagnets in hybrid nanowire quantum dots (2023). eprint 2305.19970.
- Frolov, S. M. et al. ”smoking gun” signatures of topological milestones in trivial materials by measurement fine-tuning and data postselection (2023). eprint 2309.09368.
- Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).
- Disorder-induced zero-bias peaks in majorana nanowires. Phys. Rev. B 103, 195158 (2021).
- Quantized and unquantized zero-bias tunneling conductance peaks in majorana nanowires: Conductance below and above 2e2/h2superscript𝑒2ℎ2{e}^{2}/h2 italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_h. Phys. Rev. B 103, 214502 (2021).
- Estimating disorder and its adverse effects in semiconductor majorana nanowires. Phys. Rev. Mater. 5, 124602 (2021).
- Disorder effects in topological insulator nanowires. Phys. Rev. B 104, 054205 (2021).
- Cao, Z. et al. Numerical study of pbte-pb hybrid nanowires for engineering majorana zero modes. Phys. Rev. B 105, 085424 (2022).
- ten Kate, S. C. et al. Small charging energies and g-factor anisotropy in pbte quantum dots. Nano Letters 22, 7049–7056 (2022). PMID: 35998346, eprint https://doi.org/10.1021/acs.nanolett.2c01943.
- Gomanko, M. et al. Spin and Orbital Spectroscopy in the Absence of Coulomb Blockade in Lead Telluride Nanowire Quantum Dots. SciPost Phys. 13, 089 (2022).
- Mobility of electrons and holes in pbs, pbse, and pbte between room temperature and 4.2°k. Phys. Rev. 111, 1029–1037 (1958).
- Mbe of high mobility pbte films and pbte/pb1-xeuxte heterostructures. Journal of Crystal Growth 127, 302–307 (1993).
- Grabecki, G. Quantum ballistic phenomena in nanostructures of paraelectric pbte. Journal of applied physics 101 (2007).
- Song, W. et al. Conductance quantization in pbte nanowires. Phys. Rev. B 108, 045426 (2023).
- Wang, Y. et al. Ballistic pbte nanowire devices. Nano Letters 23, 11137–11144 (2023). PMID: 37948302.
- Zhang, Z. et al. Proximity effect in pbte-pb hybrid nanowire josephson junctions. Phys. Rev. Mater. 7, 086201 (2023).
- Li, R. et al. Selective-area-grown pbte-pb planar josephson junctions for quantum devices (2023). eprint 2311.16815.
- Josephson ac and step structure in the supercurrent tunneling characteristic. Physical Review 138, A744 (1965).
- Kouwenhoven, L. P. et al. Nonlinear conductance of quantum point contacts. Phys. Rev. B 39, 8040–8043 (1989).
- Patel, N. K. et al. Evolution of half plateaus as a function of electric field in a ballistic quasi-one-dimensional constriction. Phys. Rev. B 44, 13549–13555 (1991).
- Gate-tunable superconducting weak link and quantum point contact spectroscopy on a strontium titanate surface. Nature Physics 10, 748–752 (2014).
- Lee, J. S. et al. Transport Studies of Epi-Al/InAs Two-Dimensional Electron Gas Systems for Required Building-Blocks in Topological Superconductor Networks. Nano Lett. 19, 3083 (2019).
- Quantized conductance in an insb nanowire. Nano Letters 13, 387–391 (2013). PMID: 23259576.
- Ortlepp, T. et al. Rsfq circuitry using intrinsic π𝜋\piitalic_π-phase shifts. IEEE Transactions on Applied Superconductivity 17, 659–663 (2007).
- Energy/space-efficient rapid single-flux-quantum circuits by using π𝜋\piitalic_π-shifted josephson junctions. IEICE Transactions on Electronics E101.C, 385–390 (2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.