Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Evidence for $π$-shifted Cooper quartets and few-mode transport in PbTe nanowire three-terminal Josephson junctions (2312.17703v3)

Published 29 Dec 2023 in cond-mat.mes-hall and cond-mat.supr-con

Abstract: Josephson junctions are typically characterized by a single phase difference across two superconductors. This conventional two-terminal Josephson junction can be generalized to a multi-terminal device where the Josephson energy contains terms with contributions from multiple independent phase variables. Such multi-terminal Josephson junctions (MTJJs) are being considered as platforms for engineering effective Hamiltonians with non-trivial topologies, such as Weyl crossings and higher-order Chern numbers. These prospects rely on the ability to create MTJJs with non-classical multi-terminal couplings in which only a few quantum modes are populated. Here, we demonstrate these requirements in a three-terminal Josephson junction fabricated on selective-area-grown (SAG) PbTe nanowires. We observe signatures of a $\pi$-shifted Josephson effect, consistent with inter-terminal couplings mediated by four-particle quantum states called Cooper quartets. We further observe supercurrent co-existent with a non-monotonic evolution of the conductance with gate voltage, indicating transport mediated by a few quantum modes in both two- and three-terminal devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Josephson, B. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).
  2. Production of nonlocal quartets and phase-sensitive entanglement in a superconducting beam splitter. Phys. Rev. Lett. 106, 257005 (2011).
  3. Proposal for detecting the π𝜋\piitalic_π-shifted cooper quartet supercurrent. Phys. Rev. Res. 5, 033124 (2023).
  4. Quantum interferometer for quartets in superconducting three-terminal josephson junctions. Phys. Rev. B 107, L161405 (2023).
  5. Magneto-interferometry of multiterminal josephson junctions (2023). eprint 2311.12964.
  6. Jonckheere, T. et al. Quartet currents in a biased three-terminal diffusive josephson junction. Phys. Rev. B 108, 214517 (2023).
  7. Multi-terminal Josephson junctions as topological matter. Nat. Commun. 7, 11167 (2016).
  8. J. S. Meyer & Houzet, M. Nontrivial Chern Numbers in Three-Terminal Josephson Junctions. Phys. Rev. Lett. 119, 136807 (2017).
  9. Topological Andreev bands in three-terminal Josephson junctions. Phys. Rev. B 96, 161406(R) (2017).
  10. Weyl nodes in Andreev spectra of multiterminal Josephson junctions: Chern numbers, conductances, and supercurrents. Phys. Rev. B 97, 035443 (2018).
  11. Non-abelian monopoles in the multiterminal josephson effect. Phys. Rev. B 105, L241404 (2022).
  12. Topological transconductance quantization in a four-terminal josephson junction. Phys. Rev. B 95, 075417 (2017).
  13. Draelos, A. W. et al. Supercurrent Flow in Multiterminal Graphene Josephson Junctions. Nano Lett. 19, 1039–1043 (2019).
  14. Cohen, Y. et al. Nonlocal supercurrent of quartets in a three-terminal Josephson junction. Proc. Natl. Acad. Sci. U.S.A. 115, 6991–6994 (2018).
  15. Pankratova, N. et al. Multiterminal josephson effect. Phys. Rev. X 10, 031051 (2020).
  16. Transport studies in a gate-tunable three-terminal josephson junction. Phys. Rev. B 101, 054510 (2020).
  17. Arnault, E. G. et al. Multiterminal inverse ac josephson effect. Nano Letters 21, 9668–9674 (2021).
  18. Graziano, G. V. et al. Selective control of conductance modes in multi-terminal josephson junctions. Nature Communications 2022 13:1 13, 1–8 (2022).
  19. Arnault, E. G. et al. Dynamical stabilization of multiplet supercurrents in multiterminal josephson junctions. Nano Letters 22, 7073–7079 (2022). PMID: 35997531.
  20. Huang, K.-F. et al. Evidence for 4e charge of cooper quartets in a biased multi-terminal graphene-based josephson junction. Nature Communications 13, 3032 (2022).
  21. Gupta, M. et al. Gate-tunable superconducting diode effect in a three-terminal josephson device. Nature Communications 2023 14:1 14, 1–8 (2023).
  22. Jung, J. et al. Selective area growth of pbte nanowire networks on inp. Advanced Functional Materials 32, 2208974 (2022).
  23. On possibility of the spontaneous magnetic flux in a josephson junction containing magnetic impurities. Solid State Communications 25, 1053–1057 (1978).
  24. Weides, M. et al. 0- π𝜋\piitalic_π josephson tunnel junctions with ferromagnetic barrier. Physical review letters 97, 247001 (2006).
  25. Josephson interferometry and shapiro step measurements of superconductor-ferromagnet-superconductor 0- π𝜋\piitalic_π junctions. Physical Review B 74, 020503 (2006).
  26. Kang, K. et al. van der waals π𝜋\piitalic_π josephson junctions. Nano Letters 22, 5510–5515 (2022).
  27. Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–5 (2005).
  28. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
  29. Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
  30. Lutchyn, R. M. et al. Majorana zero modes in superconductor-semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).
  31. Laroche, D. et al. Observation of the 4π𝜋\piitalic_π-periodic Josephson effect in indium arsenide nanowires. Nat. Commun. 10, 245 (2019).
  32. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. (N.Y.) 303, 2–30 (2003).
  33. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
  34. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).
  35. Mourik, V. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).
  36. Deng, M. et al. Anomalous zero-bias conductance peak in a nb–insb nanowire–nb hybrid device. Nano letters 12, 6414–6419 (2012).
  37. Albrecht, S. M. et al. Exponential protection of zero modes in majorana islands. Nature 531, 206–209 (2016).
  38. Gül, Ö. et al. Ballistic majorana nanowire devices. Nature nanotechnology 13, 192–197 (2018).
  39. Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020).
  40. Kayyalha, M. et al. Absence of evidence for chiral majorana modes in quantum anomalous hall-superconductor devices. Science 367, 64–67 (2020).
  41. Yu, P. et al. Non-majorana states yield nearly quantized conductance in proximatized nanowires. Nature Physics 17, 482–488 (2021).
  42. Valentini, M. et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable andreev states. Science 373, 82–88 (2021).
  43. Jiang, Y. et al. Zero-bias conductance peaks at zero applied magnetic field due to stray fields from integrated micromagnets in hybrid nanowire quantum dots (2023). eprint 2305.19970.
  44. Frolov, S. M. et al. ”smoking gun” signatures of topological milestones in trivial materials by measurement fine-tuning and data postselection (2023). eprint 2309.09368.
  45. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).
  46. Disorder-induced zero-bias peaks in majorana nanowires. Phys. Rev. B 103, 195158 (2021).
  47. Quantized and unquantized zero-bias tunneling conductance peaks in majorana nanowires: Conductance below and above 2⁢e2/h2superscript𝑒2ℎ2{e}^{2}/h2 italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_h. Phys. Rev. B 103, 214502 (2021).
  48. Estimating disorder and its adverse effects in semiconductor majorana nanowires. Phys. Rev. Mater. 5, 124602 (2021).
  49. Disorder effects in topological insulator nanowires. Phys. Rev. B 104, 054205 (2021).
  50. Cao, Z. et al. Numerical study of pbte-pb hybrid nanowires for engineering majorana zero modes. Phys. Rev. B 105, 085424 (2022).
  51. ten Kate, S. C. et al. Small charging energies and g-factor anisotropy in pbte quantum dots. Nano Letters 22, 7049–7056 (2022). PMID: 35998346, eprint https://doi.org/10.1021/acs.nanolett.2c01943.
  52. Gomanko, M. et al. Spin and Orbital Spectroscopy in the Absence of Coulomb Blockade in Lead Telluride Nanowire Quantum Dots. SciPost Phys. 13, 089 (2022).
  53. Mobility of electrons and holes in pbs, pbse, and pbte between room temperature and 4.2°k. Phys. Rev. 111, 1029–1037 (1958).
  54. Mbe of high mobility pbte films and pbte/pb1-xeuxte heterostructures. Journal of Crystal Growth 127, 302–307 (1993).
  55. Grabecki, G. Quantum ballistic phenomena in nanostructures of paraelectric pbte. Journal of applied physics 101 (2007).
  56. Song, W. et al. Conductance quantization in pbte nanowires. Phys. Rev. B 108, 045426 (2023).
  57. Wang, Y. et al. Ballistic pbte nanowire devices. Nano Letters 23, 11137–11144 (2023). PMID: 37948302.
  58. Zhang, Z. et al. Proximity effect in pbte-pb hybrid nanowire josephson junctions. Phys. Rev. Mater. 7, 086201 (2023).
  59. Li, R. et al. Selective-area-grown pbte-pb planar josephson junctions for quantum devices (2023). eprint 2311.16815.
  60. Josephson ac and step structure in the supercurrent tunneling characteristic. Physical Review 138, A744 (1965).
  61. Kouwenhoven, L. P. et al. Nonlinear conductance of quantum point contacts. Phys. Rev. B 39, 8040–8043 (1989).
  62. Patel, N. K. et al. Evolution of half plateaus as a function of electric field in a ballistic quasi-one-dimensional constriction. Phys. Rev. B 44, 13549–13555 (1991).
  63. Gate-tunable superconducting weak link and quantum point contact spectroscopy on a strontium titanate surface. Nature Physics 10, 748–752 (2014).
  64. Lee, J. S. et al. Transport Studies of Epi-Al/InAs Two-Dimensional Electron Gas Systems for Required Building-Blocks in Topological Superconductor Networks. Nano Lett. 19, 3083 (2019).
  65. Quantized conductance in an insb nanowire. Nano Letters 13, 387–391 (2013). PMID: 23259576.
  66. Ortlepp, T. et al. Rsfq circuitry using intrinsic π𝜋\piitalic_π-phase shifts. IEEE Transactions on Applied Superconductivity 17, 659–663 (2007).
  67. Energy/space-efficient rapid single-flux-quantum circuits by using π𝜋\piitalic_π-shifted josephson junctions. IEICE Transactions on Electronics E101.C, 385–390 (2018).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube