2000 character limit reached
Perturbative Mellin amplitudes of $\mathcal{N}=4$ SYM (2312.17692v1)
Published 29 Dec 2023 in hep-th
Abstract: We compute the Mellin amplitude of the planar four-point correlator of weight-two half-BPS operators in $\mathcal{N}=4$ SYM at one and two-loop orders in the small 't Hooft coupling expansion. The two-loop Mellin amplitude has an infinite number of poles, as expected from a stringy bulk dual. We then perform a Mellin conformal block expansion of the amplitude and extract the one-loop anomalous dimensions and OPE coefficients of the exchanged twist-two singlet multiplets. Our results match those of Dolan and Osborn \cite{Dolan:2004iy} but the computation is rather straightforward in Mellin space.
- G. Mack, “D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes,” [arXiv:0907.2407 [hep-th]].
- J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes,” JHEP 03, 025 (2011) [arXiv:1011.1485 [hep-th]].
- M. F. Paulos, “Towards Feynman rules for Mellin amplitudes,” JHEP 10, 074 (2011) [arXiv:1107.1504 [hep-th]].
- A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B. C. van Rees, “A Natural Language for AdS/CFT Correlators,” JHEP 11, 095 (2011) [arXiv:1107.1499 [hep-th]].
- M. S. Costa, V. Goncalves and J. Penedones, “Conformal Regge theory,” JHEP 12, 091 (2012) [arXiv:1209.4355 [hep-th]].
- I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, “Holography from Conformal Field Theory,” JHEP 10, 079 (2009) doi:10.1088/1126-6708/2009/10/079 [arXiv:0907.0151 [hep-th]].
- L. Rastelli and X. Zhou, “How to Succeed at Holographic Correlators Without Really Trying,” JHEP 04 (2018), 014 [arXiv:1710.05923 [hep-th]].
- O. Aharony, L. F. Alday, A. Bissi and E. Perlmutter, “Loops in AdS from Conformal Field Theory,” JHEP 07, 036 (2017) [arXiv:1612.03891 [hep-th]].
- L. F. Alday, A. Bissi and E. Perlmutter, “Genus-One String Amplitudes from Conformal Field Theory,” JHEP 06, 010 (2019) [arXiv:1809.10670 [hep-th]].
- X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, “Bulk quartic vertices from boundary four-point correlators,” [arXiv:1602.08570 [hep-th]].
- D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4, no.1, 2 (2018) [arXiv:1710.00403 [hep-th]].
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231-252 (1998) [arXiv:hep-th/9711200 [hep-th]].
- M. R. Gaberdiel and R. Gopakumar, “String Dual to Free N=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 127, no.13, 131601 (2021) [arXiv:2104.08263 [hep-th]].
- N. I. Usyukina and A. I. Davydychev, “An Approach to the evaluation of three and four point ladder diagrams,” Phys. Lett. B 298 (1993), 363-370
- P. Allendes, B. Kniehl, I. Kondrashuk, E. A. N. Cuello and M. R. Medar, “Solution to Bethe-Salpeter equation via Mellin-Barnes transform,” Nucl. Phys. B 870 (2013), 243-277 [arXiv:1205.6257 [hep-th]].
- D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, “All three-loop four-point correlators of half-BPS operators in planar 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 08 (2016), 053 [arXiv:1512.02926 [hep-th]].
- F. A. Dolan and H. Osborn, “Conformal partial wave expansions for N=4 chiral four point functions,” Annals Phys. 321 (2006), 581-626 [arXiv:hep-th/0412335 [hep-th]].
- R. Gopakumar and A. Sinha, “On the Polyakov-Mellin bootstrap,” JHEP 12, 040 (2018) [arXiv:1809.10975 [hep-th]].
- L. F. Alday, “On Genus-one String Amplitudes on AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” [arXiv:1812.11783 [hep-th]].
- R. Gopakumar, “From free fields to AdS: III,” Phys. Rev. D 72, 066008 (2005) [arXiv:hep-th/0504229 [hep-th]].
- M. R. Gaberdiel, R. Gopakumar, B. Knighton and P. Maity, “From symmetric product CFTs to AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” JHEP 05, 073 (2021) [arXiv:2011.10038 [hep-th]].
- F. Bhat, R. Gopakumar, P. Maity and B. Radhakrishnan, “Twistor coverings and Feynman diagrams,” JHEP 05, 150 (2022) [arXiv:2112.05115 [hep-th]].
- T. Fleury and S. Komatsu, “Hexagonalization of Correlation Functions,” JHEP 01, 130 (2017) [arXiv:1611.05577 [hep-th]].
- F. Aprile and P. Vieira, “Large p𝑝pitalic_p explorations. From SUGRA to big STRINGS in Mellin space,” JHEP 12, 206 (2020) [arXiv:2007.09176 [hep-th]].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.