Utilizing the Janus MoSSe surface polarization in designing complementary metal-oxide-semiconductor field-effect transistors (2312.17594v3)
Abstract: Janus transition metal dichalcogenides (JTMDs) have attracted much attention because of their outstanding electronic and optical properties. The additional out-of-plane dipole in JTMDs can form n- and p-like Ohmic contacts, and this may be used in device applications such as pin diodes and photovoltaic cells. In this study, we exploit this property to design n- and p-type metal-oxide-semiconductor field effect transistors (MOSFETs). First, we use density-functional theory calculations to study the inherent dipole field strength in the trilayer JTMD MoSSe. The intrinsic dipole of MoSSe causes band bending at both the metal/MoSSe and MoSSe/metal interfaces, resulting in electron and hole accumulation to form n- and p-type Ohmic contact regions. We incorporate this property into a 2D finite-element-based Poisson-drift-diffusion solver to perform simulations, on the basis of which we design complementary MOSFETs. Our results demonstrate that JTMDs can be used to make n- and p-MOSFETs in the same layer without the need for any extra doping.
- M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1, 16052 (2016).
- F.-X. R. Chen, N. Kawakami, C.-T. Lee, P.-Y. Shih, Z.-C. Wu, Y.-C. Yang, H.-W. Tu, W.-B. Jian, C. Hu, and C.-L. Lin, “Visualizing correlation between carrier mobility and defect density in MoS2 FET,” Appl. Phys. Lett. 121, 151601 (2022a).
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
- M. Ye, D. Zhang, and Y. K. Yap, “Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Electronics 6, 43 (2017).
- A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F. M. Peeters, Z. Liu, C. L. Hinkle, S.-H. Oh, P. D. Ye, S. J. Koester, Y. H. Lee, P. Avouris, X. Wang, and T. Low, “Bandgap engineering of two-dimensional semiconductor materials,” npj 2D Mater. Appl. 4, 29 (2020).
- M. I. Serna, S. H. Yoo, S. Moreno, Y. Xi, J. P. Oviedo, H. Choi, H. N. Alshareef, M. J. Kim, M. Minary-Jolandan, and M. A. Quevedo-Lopez, “Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control,” ACS Nano 10, 6054–6061 (2016).
- Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, et al., “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano 7, 8963–8971 (2013).
- C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett. 105, 083112 (2014).
- Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects of two-dimensional transistors,” Nature 591, 43–53 (2021).
- A.-J. Cho, K. C. Park, and J.-Y. Kwon, “A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors,” Nanoscale Res. Lett. 10, 115 (2015).
- Y.-C. Chen, Y.-T. Chao, E. Chen, C.-H. Wu, and Y.-R. Wu, “Studies of two-dimensional material resistive random-access memory by kinetic monte carlo simulations,” Phys. Rev. Mater. 7, 094001 (2023).
- X. Xiong, A. Tong, X. Wang, S. Liu, X. Li, R. Huang, and Y. Wu, “Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion>700subscript𝐼on700I_{\mathrm{on}}>700italic_I start_POSTSUBSCRIPT roman_on end_POSTSUBSCRIPT > 700 µA/µm and MoS2/WSe2 CFET,” in 2021 IEEE International Electron Devices Meeting (IEDM) (2021) pp. 7.5.1–7.5.4.
- Y. Zhao, T.-Y. Tsai, G. Wu, C. Ó Coileáin, Y.-F. Zhao, D. Zhang, K.-M. Hung, C.-R. Chang, Y.-R. Wu, and H.-C. Wu, “Graphene/SnS2 van der waals photodetector with high photoresponsivity and high photodetectivity for broadband 365–2240 nm detection,” ACS Appl. Mater. Interfaces 13, 47198–47207 (2021).
- P.-F. Chen, E. Chen, and Y.-R. Wu, “Design of monolayer MoS2 nanosheet transistors for low-power applications,” IEEE Transactions on Electron Devices 69, 358–363 (2022).
- A. Pezeshki, H. Shokouh, S. Hossein, P. J. Jeon, I. Shackery, J. S. Kim, I.-K. Oh, S. C. Jun, H. Kim, and S. Im, “Static and dynamic performance of complementary inverters based on nanosheet α𝛼\alphaitalic_α-MoTe2 p-channel and MoS2 n-channel transistors,” ACS Nano 10, 1118–1125 (2016).
- D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2,” ACS Nano 10, 8174–8181 (2014).
- L. Zhang, Y. Zhang, X. Sun, K. Jia, Q. Zhang, Z. Wu, and H. Yin, “High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications,” J. Mater. Sci.: Mater. Electron. 32, 17427–17435 (2021).
- A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nat. Mater. 14, 1195–1205 (2015).
- Y. Zheng, J. Gao, C. Han, and W. Chen, “Ohmic contact engineering for two-dimensional materials,” Cell Rep. Phys. Sci. 2, 100298 (2021).
- J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” Phys. Rev. X 4, 031005 (2014).
- B. Ouyang, S. Xiong, and Y. Jing, “Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal,” npj 2D Mater. Appl. 2, 13 (2018).
- H. Tang, B. Shi, Y. Pan, J. Li, X. Zhang, J. Yan, S. Liu, J. Yang, L. Xu, J. Yang, M. Wu, and J. Lu, “Schottky contact in monolayer WS2 field-effect transistors,” Adv. Theory Simul. 2, 1900001 (2019).
- R. T. Tung, “The physics and chemistry of the Schottky barrier height,” Appl. Phys. Rev. 1, 011304 (2014).
- R. Younas, G. Zhou, and C. L. Hinkle, “A perspective on the doping of transition metal dichalcogenides for ultra-scaled transistors: Challenges and opportunities,” Appl. Phys. Lett. 122, 160504 (2023).
- L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, and Y. Liu, “Doping-free complementary WSe2 circuit via van der Waals metal integration,” Nat. Commun. 11, 1866 (2020).
- N. Zhao and U. Schwingenschlögl, “Dipole-induced Ohmic contacts between monolayer Janus MoSSe and bulk metals,” npj 2D Mater. Appl. 131, 72 (2022).
- H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8, 4033–4041 (2014).
- S. Das, M. Dubey, and A. Roelofs, “High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors,” Appl. Phys. Lett. 105, 083511 (2014).
- S. Ullah, X. Yang, H. Q. Ta, M. Hasan, A. Bachmatiuk, K. Tokarska, B. Trzebicka, L. Fu, and M. H. Rummeli, “Graphene transfer methods: A review,” Nano Res. 14, 3756–3772 (2021).
- Y.-F. Lin, Y. Xu, S.-T. Wang, S.-L. Li, M. Yamamoto, A. Aparecido-Ferreira, W. Li, H. Sun, S. Nakaharai, W.-B. Jian, K. Ueno, and K. Tsukagoshi, “Ambipolar MoTe2 transistors and their applications in logic circuits,” Adv. Mater. 26, 3263–3269 (2014).
- K.-C. Lee, S.-H. Yang, Y.-S. Sung, Y.-M. Chang, C.-Y. Lin, F.-S. Yang, M. Li, K. Watanabe, T. Taniguchi, C.-H. Ho, C.-H. Lien, and Y.-F. Lin, “Analog circuit applications based on all-2D ambipolar ReSe2 field-effect transistors,” Adv. Funct. Mater. 29, 1809011 (2019).
- A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M.-Y. Chou, X. Zhang, and L.-J. Li, “Janus monolayers of transition metal dichalcogenides,” Nat. Nanotechnol. 12, 744–749 (2017).
- D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, M. M. Petrić, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A. V. Stier, K. Müller, S. Yang, I. S. Esqueda, H. Zhuang, J. J. Finley, and S. Tongay, “Room-temperature synthesis of 2D Janus crystals and their heterostructures,” Adv. Mater. 32, 2006320 (2020).
- Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A. A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, H. M. I. Meyer, M. Lorenz, M. F. Chisholm, I. N. Ivanov, C. M. Rouleau, G. Duscher, K. Xiao, and D. B. Geohegan, “Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures,” ACS Nano 14, 3896–3906 (2020).
- M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J. Finley, A. Botello-Méndez, and K. Müller, “Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe,” Phys. Rev. B 103, 035414 (2021).
- R. Chaurasiya, G. Gupta, and A. Dixit, “Ultrathin Janus WSSe buffer layer for W(S/Se)2 absorber based solar cells: A hybrid, DFT and macroscopic, simulation studies,” Sol. Energy Mater. Sol. Cells 201, 110076 (2019).
- L. Zhang, Y. Xia, X. Li, L. Li, X. Fu, J. Cheng, and R. Pan, “Janus two-dimensional transition metal dichalcogenides,” J. Appl. Phys. 131, 230902 (2022).
- L. Zhang, Z. Yang, T. Gong, R. Pan, H. Wang, Z. Guo, H. Zhang, and X. Fu, “Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications,” J. Mater. Chem. A 8, 8813–8830 (2020).
- D. Kong, F. Tian, Y. Xu, S. Zhu, Z. Yu, L. Xiong, P. Li, H. Wei, X. Zheng, and M. Peng, “Polarity reversal and strain modulation of Janus MoSSe/GaN polar semiconductor heterostructures,” Phys. Chem. Chem. Phys. 25, 30361–30372 (2023).
- Y.-Q. Chen, H.-H. Zhang, B. Wen, X.-B. Li, X.-L. Wei, W.-J. Yin, L.-M. Liu, and G. Teobaldi, “The role of permanent and induced electrostatic dipole moments for Schottky barriers in Janus MXY/graphene heterostructures: A first-principles study,” Dalton Trans. 51, 9905–9914 (2022b).
- M. Palsgaard, T. Gunst, T. Markussen, K. S. Thygesen, and M. Brandbyge, “Stacked Janus device concepts: Abrupt pn-junctions and cross-plane channels,” Nano Lett. 18, 7275–7281 (2018).
- X. Liu, P. Gao, W. Hu, and J. Yang, “Photogenerated-carrier separation and transfer in two-dimensional Janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells,” J. Phys. Chem. Lett. 11, 4070–4079 (2020).
- Y. R. Wu, “Optoelectronic Device Simulation Laboratory,” http://yrwu-wk.ee.ntu.edu.tw/, see the DDCC 2D section for more information.
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).
- D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43, 1494–1497 (1979).
- S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu,” J. Chem. Phys. 132, 154104 (2010).
- H. L. Skriver and N. M. Rosengaard, “Surface energy and work function of elemental metals,” Phys. Rev. B 46, 7157 (1992).
- M. Wu, Y. I. Alivov, and H. Negi, Morkoç, “High-κ𝜅\kappaitalic_κ dielectrics and advanced channel concepts for Si MOSFET,” J. Mater. Sci.: Mater. Electron. 19, 915–951 (2008).
- B. Kumar, B. K. Kaushik, and Y. S. Negi, “Perspectives and challenges for organic thin film transistors: Materials, devices, processes and applications,” J. Mater. Sci.: Mater. Electron. 25, 1–30 (2014).
- A. Laturia, M. L. V. de Put, and W. G. Vandenberghe, “Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk,” npj 2D Mater. Appl. 2, 6 (2018).
- H.-C. Pai and Y.-R. Wu, “Investigating the high field transport properties of Janus WSSe and MoSSe by DFT analysis and Monte Carlo simulations,” J. Appl. Phys. 131, 144303 (2022).
- C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, “First-principles study of metal–graphene interfaces,” J. Appl. Phys. 108, 123711 (2010).
- A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, and S. Das, “Benchmarking monolayer MoS2 and WS2 field-effect transistors,” Nat. Commun. 12, 693 (2021).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.