Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust TOA-based Localization with Inaccurate Anchors for MANET

Published 29 Dec 2023 in cs.NI and eess.SP | (2312.17516v1)

Abstract: Accurate node localization is vital for mobile ad hoc networks (MANETs). Current methods like Time of Arrival (TOA) can estimate node positions using imprecise baseplates and achieve the Cram\'er-Rao lower bound (CRLB) accuracy. In multi-hop MANETs, some nodes lack direct links to base anchors, depending on neighbor nodes as dynamic anchors for chain localization. However, the dynamic nature of MANETs challenges TOA's robustness due to the availability and accuracy of base anchors, coupled with ranging errors. To address the issue of cascading positioning error divergence, we first derive the CRLB for any primary node in MANETs as a metric to tackle localization error in cascading scenarios. Second, we propose an advanced two-step TOA method based on CRLB which is able to approximate target node's CRLB with only local neighbor information. Finally, simulation results confirm the robustness of our algorithm, achieving CRLB-level accuracy for small ranging errors and maintaining precision for larger errors compared to existing TOA methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. H. Zhang, S. Y. Tan, and C. K. Seow, “TOA-Based Indoor Localization and Tracking With Inaccurate Floor Plan Map via MRMSC-PHD Filter,” IEEE Sensors J., vol. 19, no. 21, pp. 9869–9882, 2019.
  2. K. Yu, J. philippe Montillet, A. Rabbachin, P. Cheong, and I. Oppermann, “UWB location and tracking for wireless embedded networks,” Signal Process., vol. 86, no. 9, pp. 2153–2171, Sep. 2006.
  3. Y.-Y. Li, G.-Q. Qi, and A.-D. Sheng, “Performance metric on the best achievable accuracy for hybrid toa/aoa target localization,” IEEE Commun. Lett., vol. 22, no. 7, pp. 1474–1477, 2018.
  4. M. Tahboush and M. Agoyi, “A hybrid wormhole attack detection in mobile ad-hoc network (manet),” IEEE Access, vol. 9, pp. 11 872–11 883, 2021.
  5. J. Huang, J. Liang, and S. Luo, “Method and Analysis of TOA-Based Localization in 5G Ultra-Dense Networks with Randomly Distributed Nodes,” IEEE Access, vol. 7, pp. 174 986–175 002, Dec. 2019.
  6. J. Dawes, “SDG interlinkage networks: Analysis, robustness, sensitivities, and hierarchies,” World Dev., vol. 149, p. 105693, Jan. 2022.
  7. D. Niculescu and B. Nath, “DV based positioning in ad hoc networks,” Telecommun. Syst., vol. 22, pp. 267–280, Jan. 2003.
  8. D. Jia, W. Li, P. Wang, X. Feng, H. Li, and Z. Jiao, “An advanced distributed mds-map localization algorithm with improved merging strategy,” in 2016 IEEE International Conference on Information and Automation (ICIA).   IEEE, 2016, pp. 1980–1985.
  9. L. Gui, T. Val, A. Wei, and R. Dalce, “Improvement of range-free localization technology by a novel dv-hop protocol in wireless sensor networks,” Ad Hoc Networks, vol. 24, pp. 55–73, 2015.
  10. X. Chen, F. Dovis, S. Peng, and Y. Morton, “Comparative Studies of GPS Multipath Mitigation Methods Performance,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 3, pp. 1555–1568, Jul. 2013.
  11. Y. Yuan, F. Shen, and X. Li, “GPS multipath and NLOS mitigation for relative positioning in urban environments,” Aerosp. Sci. Technol., vol. 107, p. 106315, Dec. 2020.
  12. N. Fornaro, R. Giuliani, C. Noviello, D. Reale, and S. Verde, “Assimilation of GPS-Derived Atmospheric Propagation Delay in DInSAR Data Processing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 2, pp. 784–799, Feb. 2015.
  13. H. Guo and P. Crossley, “Design of a Time Synchronization System Based on GPS and IEEE 1588 for Transmission Substations,” IEEE Trans. Power Del., vol. 32, no. 4, pp. 2091–2100, Aug. 2017.
  14. M. Vossiek, L. Wiebking, P. Gulden, J. Wieghardt, C. Hoffmann, and P. Heide, “Wireless local positioning,” IEEE Microw. Mag., vol. 4, no. 4, pp. 77–86, Dec. 2003.
  15. V. Savic, J. Ferrer-Coll, P. Angskog, J. Chilo, P. Stenumgaard, and E. G. Larsson, “Measurement Analysis and Channel Modeling for TOA-Based Ranging in Tunnels,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 456–467, Jan. 2015.
  16. T. Pavlenko, M. Schutz, M. Vossiek, T. Walter, and S. Montenegro, “Wireless Local Positioning System for Controlled UAV Landing in GNSS-Denied Environment,” in Proc. IEEE 5th Int. Workshop Metrol. Aerosp. (MetroAeroSpace), Jun. 2019, pp. 171–175.
  17. N. Mansoor, M. I. Hossain, A. Rozario, M. Zareei, and A. R. Arreola, “A fresh look at routing protocols in unmanned aerial vehicular networks: A survey,” IEEE Access, vol. 11, pp. 66 289–66 308, 2023.
  18. F. B. Sorbelli, C. M. Pinotti, S. Silvestri, and S. K. Das, “Measurement Errors in Range-Based Localization Algorithms for UAVs: Analysis and Experimentation,” IEEE Trans. Mobile Comput., vol. 21, no. 4, pp. 1291–1304, Sep. 2020.
  19. J. Shen, A. F. Molisch, and J. Salmi, “Accurate Passive Location Estimation Using TOA Measurements,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 2182–2192, Jun. 2012.
  20. R. Kaune, J. Hörst, and W. Koch, “Accuracy analysis for tdoa localization in sensor networks,” in 14th International Conference on Information Fusion, 2011, pp. 1–8.
  21. R. Peng and M. L. Sichitiu, “Angle of Arrival Localization for Wireless Sensor Networks,” in Proc. IEEE SECON, vol. 1, Sep. 2006, pp. 374–382.
  22. M. Jais, P. Ehkan, R. Ahmad, I. Ismail, T. Sabapathy, and M. Jusoh, “Review of angle of arrival (AOA) estimations through received signal strength indication (RSSI) for wireless sensors network (WSN),” in Proc. Int. Conf. Comput., Commun., Control Technol. (I4CT), Apr. 2015, pp. 354–359.
  23. S. Zhao, X.-P. Zhang, X. Cui, and M. Lu, “A New TOA Localization and Synchronization System With Virtually Synchronized Periodic Asymmetric Ranging Network,” IEEE Internet Things J., vol. 8, no. 11, pp. 9030–9044, Jun. 2021.
  24. Y. Zou and H. Liu, “Semidefinite Programming Methods for Alleviating Clock Synchronization Bias and Sensor Position Errors in TDOA Localization,” IEEE Signal Process. Lett., vol. 27, pp. 241–245, Jan. 2020.
  25. R. Kaune, “Accuracy studies for TDOA and TOA localization,” in Proc. 15th Int. Conf. Inf. Fusion, Jul. 2012, pp. 408–415.
  26. N.-T. Nguyen and B.-H. Liu, “The mobile sensor deployment problem and the target coverage problem in mobile wireless sensor networks are np-hard,” IEEE Systems Journal, vol. 13, no. 2, pp. 1312–1315, 2019.
  27. Y. Wang, F. Zheng, M. Wiemeler, W. Xiong, and T. Kaiser, “Reference Selection for Hybrid TOA/RSS Linear Least Squares Localization,” in Proc. IEEE Veh. Technol. Conf. (VTC Fall), Sep. 2013, pp. 1–5.
  28. Y. Kang, Q. Wang, J. Wang, and R. Chen, “A High-Accuracy TOA-Based Localization Method Without Time Synchronization in a Three-Dimensional Space,” IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 173–182, Jan. 2019.
  29. W. Ding, S. Chang, X. Yang, S.-D. Bao, and M. Chen, “Genetic Algorithm with Opposition-based Learning and Redirection for Secure Localization Using ToA Measurements in Wireless Networks,” IEEE Internet Things J., pp. 1–1, Aug. 2023.
  30. X. Zhu, Y. Zhang, and Q. Zhang, “An Improved DV-Hop Node Localization Algorithm Based on Sparrow Search for WSNs,” in Proc. IEEE 12th Int. Conf. Electron. Inf. Emergency Commun. (ICEIEC), Jul. 2022, pp. 154–157.
  31. X. Lv, K. Liu, and P. Hu, “Geometry influence on gdop in toa and aoa positioning systems,” in 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing, vol. 2, 2010, pp. 58–61.
  32. D. Bajovic, B. Sinopoli, and J. Xavier, “Sensor Selection for Event Detection in Wireless Sensor Networks,” IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4938–4953, Oct. 2011.
  33. E. Kuiper and S. Nadjm-Tehrani, “Geographical Routing With Location Service in Intermittently Connected MANETs,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 592–604, Feb. 2011.
  34. T. Jia and R. M. Buehrer, “A new Cramer-Rao lower bound for TOA-based localization,” in Proc. - IEEE Mil. Commun. Conf. MILCOM, Nov. 2008, pp. 1–5.
  35. Y. Zou and Q. Wan, “Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties,” IEEE Commun. Lett., vol. 20, no. 9, pp. 1860–1863, Sep. 2016.
  36. G. Yang, Y. Yan, H. Wang, and X. Shen, “Improved robust TOA-based source localization with individual constraint of sensor location,” Signal Process., vol. 196, p. 108504, Art. 2022.
  37. Z. W. Mekonnen and A. Wittneben, “Robust TOA based localization for wireless sensor networks with anchor position uncertainties,” in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2014, pp. 2029–2033.
  38. X. Shi, J. Su, Z. Ye, F. Chen, P. Zhang, and F. Lang, “A Wireless Sensor Network Node Location Method Based on Salp Swarm Algorithm,” in Proc.2019 10th IEEE IDAACS, vol. 1, Sep. 2019, pp. 357–361.
  39. Y. Yang, X. Wang, D. Li, D. Chen, and Q. Zhang, “An Improved Indoor 3-D Ultrawideband Positioning Method by Particle Swarm Optimization Algorithm,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, Aug. 2022.
  40. Z. Xiao and Y. Zeng, “An overview on integrated localization and communication towards 6G,” Sci. China Inf. Sci., vol. 65, pp. 1–46, Mar. 2022.
  41. Y. Zheng, J. Liu, M. Sheng, and C. Zhou, “Exploiting fingerprint correlation for fingerprint-based indoor localization: A deep learning-based approach,” in Machine Learning for Indoor Localization and Navigation.   Springer, 2023, pp. 201–237.
  42. M. Sheng, J. Li, and Y. Shi, “Routing protocol with QoS guarantees for ad-hoc network,” Electronics Letters, vol. 39, no. 1, pp. 143–145, 2003.
  43. D. Zhai, M. Sheng, X. Wang, Y. Li, J. Song, and J. Li, “Rate and energy maximization in SCMA networks with wireless information and power transfer,” IEEE Communications Letters, vol. 20, no. 2, pp. 360–363, 2015.
  44. J. Li, Z. J. Haas, and M. Sheng, “Capacity evaluation of multi-channel multi-hop ad hoc networks,” in 2002 IEEE International Conference on Personal Wireless Communications.   IEEE, 2002, pp. 211–214.
  45. D. Zhou, M. Sheng, J. Li, and Z. Han, “Aerospace Integrated Networks Innovation for Empowering 6G: A Survey and Future Challenges,” IEEE Communications Surveys & Tutorials, 2023.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.