Papers
Topics
Authors
Recent
2000 character limit reached

Maximizing the Yield of Bucket Brigade Quantum Random Access Memory using Redundancy Repair (2312.17483v2)

Published 29 Dec 2023 in quant-ph

Abstract: Quantum Random Access Memory (qRAM) is an essential computing element for running oracle-based quantum algorithms. qRAM exploits the principle of quantum superposition to access all data stored in the memory cell simultaneously and guarantees the superior performance of quantum algorithms. A qRAM memory cell comprises logical qubits encoded through quantum error correction technology for the successful operation of qRAM against various quantum noises. In addition to quantum noise, the low-technology nodes based on silicon technology can increase the qubit density and may introduce defective qubits. As qRAM comprises many qubits, its yield will be reduced by defective qubits; these qubits must be handled using QEC scheme. However, the QEC scheme requires numerous physical qubits, which burdens resource overhead. To resolve this overhead problem, we propose a quantum memory architecture that compensates for defective qubits by introducing redundant qubits. We also analyze the yield improvement offered by our proposed architecture by varying the ideal fabrication error rate from 0.5% to 1% for different numbers of logical qubits in the qRAM. In the qRAM comprising 1,024 logical qubits, eight redundant logical qubits improved the yield by 95.92% from that of qRAM not employing the redundant repair scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science (IEEE, 1994) pp. 124–134.
  2. L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (ACM, 1996) pp. 212–219.
  3. C. T. Hann, Practicality of Quantum Random Access Memory, Ph.D. thesis, Yale University (2021).
  4. V. Giovannetti, S. Lloyd, and L. Maccone, Architectures for a quantum random access memory, Physical Review A 78, 052310 (2008a).
  5. K. K. Soni and A. Rasool, Quantum-based exact pattern matching algorithms for biological sequences, ETRI Journal 43, 483 (2021).
  6. C. A. Trugenberger, Probabilistic quantum memories, Physical Review Letters 87, 067901 (2001).
  7. G. Schaller and R. Schützhold, Quantum algorithm for optical-template recognition with noise filtering, Physical Review A 74, 012303 (2006).
  8. R. Schützhold, Pattern recognition on a quantum computer, Physical Review A 67, 062311 (2003).
  9. M. Zajac and U. Störl, Towards quantum-based search for industrial data-driven services, in 2022 IEEE International Conference on Quantum Software (QSW) (IEEE, 2022) pp. 38–40.
  10. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, 2010).
  11. D. K. Park, F. Petruccione, and J.-K. K. Rhee, Circuit-based quantum random access memory for classical data, Scientific reports 9, 3949 (2019).
  12. A. Paler, O. Oumarou, and R. Basmadjian, Parallelizing the queries in a bucket-brigade quantum random access memory, Physical Review A 102, 032608 (2020).
  13. S. Maurya and S. Tannu, Compaqt: Compressed waveform memory architecture for scalable qubit control, in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) (IEEE, 2022) pp. 1059–1077.
  14. O. Di Matteo, V. Gheorghiu, and M. Mosca, Fault-tolerant resource estimation of quantum random-access memories, IEEE Transactions on Quantum Engineering 1, 1 (2020).
  15. A. Montanaro, Quantum algorithms: an overview, npj Quantum Information 2, 1 (2016).
  16. F. Leymann and J. Barzen, The bitter truth about gate-based quantum algorithms in the nisq era, Quantum Science and Technology 5, 044007 (2020).
  17. R. Asaka, K. Sakai, and R. Yahagi, Two-level quantum walkers on directed graphs. ii. application to quantum random access memory, Physical Review A 107, 022416 (2023).
  18. A. Jayashankar and P. Mandayam, Quantum error correction: Noise-adapted techniques and applications, Journal of the Indian Institute of Science , 1 (2022).
  19. Y.-C. Tang and G.-X. Miao, Robust surface code topology against sparse fabrication defects in a superconducting-qubit array, Physical Review A 93, 032322 (2016).
  20. B. H. Fang, Embedded Memory BIST for Systems-on-a-Chip, Master’s thesis, McMaster University (2003).
  21. V. Sridhar and M. R. Prasad, Built-in self-repair (bisr) technique widely used to repair embedded random access memories (rams), International Journal of Computer Science Engineering (IJCSE) 1, 42 (2012).
  22. D. Qin, X. Xu, and Y. Li, An overview of quantum error mitigation formulas, Chinese Physics B  (2022).
  23. A. Strikis, S. C. Benjamin, and B. J. Brown, Quantum computing is scalable on a planar array of qubits with fabrication defects, Phys. Rev. Appl. 19, 064081 (2023).
  24. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum random access memory, Physical review letters 100, 160501 (2008b).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.