2000 character limit reached
Quantum Hamiltonian Learning for the Fermi-Hubbard Model (2312.17390v2)
Published 28 Dec 2023 in quant-ph, cs.NA, and math.NA
Abstract: This work proposes a protocol for Fermionic Hamiltonian learning. For the Hubbard model defined on a bounded-degree graph, the Heisenberg-limited scaling is achieved while allowing for state preparation and measurement errors. To achieve $\epsilon$-accurate estimation for all parameters, only $\tilde{\mathcal{O}}(\epsilon{-1})$ total evolution time is needed, and the constant factor is independent of the system size. Moreover, our method only involves simple one or two-site Fermionic manipulations, which is desirable for experiment implementation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.