Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flavor Matters, but Matter Flavors: Matter Effects on Flavor Composition of Astrophysical Neutrinos (2312.17315v1)

Published 28 Dec 2023 in hep-ph, astro-ph.GA, astro-ph.HE, and hep-ex

Abstract: We show that high-energy astrophysical neutrinos produced in the cores of heavily obscured active galactic nuclei (AGNs) can undergo strong matter effects, thus significantly influencing their source flavor ratios. In particular, matter effects can completely modify the standard interpretation of the flavor ratio measurements in terms of the physical processes occurring in the sources (e.g., $pp$ versus $p\gamma$, full pion-decay chain versus muon-damped pion decay). We contrast our results with the existing flavor ratio measurements at IceCube, as well as with projections for next-generation neutrino telescopes like IceCube-Gen2. Signatures of these matter effects in neutrino flavor composition would not only bring more evidence for neutrino production in central AGN regions, but would also be a powerful probe of heavily Compton-thick AGNs, which escape conventional observation in $X$-rays and other electromagnetic wavelengths.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. M. Ahlers and F. Halzen, “Opening a New Window onto the Universe with IceCube,” Prog. Part. Nucl. Phys. 102 (2018) 73–88, arXiv:1805.11112.
  2. N. Kurahashi, K. Murase, and M. Santander, “High-Energy Extragalactic Neutrino Astrophysics,” Ann. Rev. Nucl. Part. Sci. 72 (2022) 365, arXiv:2203.11936.
  3. S. Troitsky, “The origin of high-energy astrophysical neutrinos: new results and prospects,” arXiv:2311.00281.
  4. M. Ahlers, Y. Bai, V. Barger, and R. Lu, “Galactic neutrinos in the TeV to PeV range,” Phys. Rev. D 93 (2016) no. 1, 013009, arXiv:1505.03156.
  5. F. S. Greus and A. S. Losa, “Multimessenger Astronomy with Neutrinos,” Universe 7 (2021) no. 11, 397, arXiv:2110.11817.
  6. C. Guépin, K. Kotera, and F. Oikonomou, “High-energy neutrino transients and the future of multi-messenger astronomy,” Nature Rev. Phys. 4 (2022) no. 11, 697–712, arXiv:2207.12205.
  7. X. Rodrigues, S. Garrappa, S. Gao, V. S. Paliya, A. Franckowiak, and W. Winter, “Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106,” Astrophys. J. 912 (2021) no. 1, 54, arXiv:2009.04026.
  8. K. Murase and F. W. Stecker, “Chapter 10: High-Energy Neutrinos from Active Galactic Nuclei,” arXiv:2202.03381.
  9. R. Antonucci, “Unified models for active galactic nuclei and quasars,” Ann. Rev. Astron. Astrophys. 31 (1993) 473–521.
  10. C. M. Urry and P. Padovani, “Unified schemes for radio-loud active galactic nuclei,” Publ. Astron. Soc. Pac. 107 (1995) 803, arXiv:astro-ph/9506063.
  11. K. Murase, D. Guetta, and M. Ahlers, “Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos,” Phys. Rev. Lett. 116 (2016) no. 7, 071101, arXiv:1509.00805.
  12. K. Murase, S. S. Kimura, and P. Meszaros, “Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection,” Phys. Rev. Lett. 125 (2020) no. 1, 011101, arXiv:1904.04226.
  13. S. Inoue, M. Cerruti, K. Murase, and R.-Y. Liu, “Multimessenger emission from winds and tori in active galactic nuclei,” PoS ICRC2023 (2023) 1161, arXiv:2207.02097.
  14. K. Fang, J. S. Gallagher, and F. Halzen, “The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources,” Astrophys. J. 933 (2022) no. 2, 190, arXiv:2205.03740.
  15. F. Halzen, “IceCube: Neutrinos from Active Galaxies,” in 57th Rencontres de Moriond on Electroweak Interactions and Unified Theories. 5, 2023. arXiv:2305.07086.
  16. R. C. Hickox and D. M. Alexander, “Obscured Active Galactic Nuclei,” Ann. Rev. Astron. Astrophys. 56 (2018) 625–671, arXiv:1806.04680.
  17. E. L. Lambrides, M. Chiaberge, T. Heckman, R. Gilli, F. Vito, and C. Norman, “A Large Population of Obscured AGN in Disguise as Low-luminosity AGN in Chandra Deep Field South,” Astrophys. J. 897 (2020) no. 2, 160, arXiv:2002.00955.
  18. C. M. Carroll, T. T. Ananna, R. C. Hickox, A. Masini, R. J. Assef, D. Stern, C.-T. J. Chen, and L. Lanz, “A High Fraction of Heavily X-Ray-obscured Active Galactic Nuclei,” Astrophys. J. 950 (2023) no. 2, 127, arXiv:2303.08813.
  19. K. Murase, “Hidden Hearts of Neutrino Active Galaxies,” Astrophys. J. Lett. 941 (2022) no. 1, L17, arXiv:2211.04460.
  20. C. Lunardini and A. Y. Smirnov, “The Minimum width condition for neutrino conversion in matter,” Nucl. Phys. B 583 (2000) 260–290, arXiv:hep-ph/0002152.
  21. J. G. Learned and S. Pakvasa, “Detecting tau-neutrino oscillations at PeV energies,” Astropart. Phys. 3 (1995) 267–274, arXiv:hep-ph/9405296.
  22. O. Mena, I. Mocioiu, and S. Razzaque, “Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources,” Phys. Rev. D 75 (2007) 063003, arXiv:astro-ph/0612325.
  23. S. Razzaque and A. Y. Smirnov, “Flavor conversion of cosmic neutrinos from hidden jets,” JHEP 03 (2010) 031, arXiv:0912.4028.
  24. S. Sahu and B. Zhang, “Effect of Resonant Neutrino Oscillation on TeV Neutrino Flavor Ratio from Choked GRBs,” Res. Astron. Astrophys. 10 (2010) 943–949, arXiv:1007.4582.
  25. K. Varela, S. Sahu, A. F. Osorio Oliveros, and J. C. Sanabria, “High energy neutrinos from choked GRBs and their flavor ratio measurement by the IceCube,” Eur. Phys. J. C 75 (2015) no. 6, 289, arXiv:1411.7992.
  26. D. Xiao and Z. G. Dai, “TeV-PeV Neutrino Oscillation of Low-luminosity Gamma-ray Bursts,” Astrophys. J. 805 (2015) no. 2, 137, arXiv:1504.01603.
  27. J. Carpio and K. Murase, “Oscillation of high-energy neutrinos from choked jets in stellar and merger ejecta,” Phys. Rev. D 101 (2020) no. 12, 123002, arXiv:2002.10575.
  28. D.-H. Xu and S.-J. Rong, “Matter effects on flavor transitions of high-energy astrophysical neutrinos based on different decoherence schemes,” arXiv:2205.03164.
  29. S. L. Glashow, “Resonant Scattering of Antineutrinos,” Phys. Rev. 118 (1960) 316–317.
  30. A. Bhattacharya, R. Gandhi, W. Rodejohann, and A. Watanabe, “The Glashow resonance at IceCube: signatures, event rates and p⁢p𝑝𝑝ppitalic_p italic_p vs. p⁢γ𝑝𝛾p\gammaitalic_p italic_γ interactions,” JCAP 10 (2011) 017, arXiv:1108.3163.
  31. G.-y. Huang, M. Lindner, and N. Volmer, “Inferring astrophysical neutrino sources from the Glashow resonance,” JHEP 11 (2023) 164, arXiv:2303.13706.
  32. Q. Liu, N. Song, and A. C. Vincent, “Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow resonance,” Phys. Rev. D 108 (2023) no. 4, 043022, arXiv:2304.06068.
  33. P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237.
  34. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178, arXiv:2007.14792.
  35. F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, “Unfinished fabric of the three neutrino paradigm,” Phys. Rev. D 104 (2021) no. 8, 083031, arXiv:2107.00532.
  36. J. P. Rachen and P. Meszaros, “Photohadronic neutrinos from transients in astrophysical sources,” Phys. Rev. D 58 (1998) 123005, arXiv:astro-ph/9802280.
  37. T. Kashti and E. Waxman, “Flavoring astrophysical neutrinos: Flavor ratios depend on energy,” Phys. Rev. Lett. 95 (2005) 181101, arXiv:astro-ph/0507599.
  38. M. Kachelriess, S. Ostapchenko, and R. Tomas, “High energy neutrino yields from astrophysical sources. 2. Magnetized sources,” Phys. Rev. D 77 (2008) 023007, arXiv:0708.3047.
  39. S. Hummer, M. Maltoni, W. Winter, and C. Yaguna, “Energy dependent neutrino flavor ratios from cosmic accelerators on the Hillas plot,” Astropart. Phys. 34 (2010) 205–224, arXiv:1007.0006.
  40. W. Winter, “Describing the Observed Cosmic Neutrinos by Interactions of Nuclei with Matter,” Phys. Rev. D 90 (2014) no. 10, 103003, arXiv:1407.7536.
  41. L. A. Anchordoqui, H. Goldberg, F. Halzen, and T. J. Weiler, “Galactic point sources of TeV antineutrinos,” Phys. Lett. B 593 (2004) 42, arXiv:astro-ph/0311002.
  42. L. A. Anchordoqui, “Neutron β𝛽\betaitalic_β-decay as the origin of IceCube’s PeV (anti)neutrinos,” Phys. Rev. D 91 (2015) 027301, arXiv:1411.6457.
  43. Y. Inoue, D. Khangulyan, and A. Doi, “On the Origin of High-energy Neutrinos from NGC 1068: The Role of Nonthermal Coronal Activity,” Astrophys. J. Lett. 891 (2020) no. 2, L33, arXiv:1909.02239.
  44. J. Jiang, A. C. Fabian, J. Wang, D. J. Walton, J. A. García, M. L. Parker, J. F. Steiner, and J. A. Tomsick, “High-density reflection spectroscopy: I. A case study of GX 339-4,” Mon. Not. Roy. Astron. Soc. 484 (2019) no. 2, 1972–1982, arXiv:1901.01739.
  45. J. Jiang, A. C. Fabian, T. Dauser, L. Gallo, J. A. Garcia, E. Kara, M. L. Parker, J. A. Tomsick, D. J. Walton, and C. S. Reynolds, “High Density Reflection Spectroscopy – II. The density of the inner black hole accretion disc in AGN,” Mon. Not. Roy. Astron. Soc. 489 (2019) no. 3, 3436–3455, arXiv:1908.07272.
  46. T. P. Adhikari, A. Różańska, B. Czerny, K. Hryniewicz, and G. J. Ferland, “The Intermediate-line Region in Active Galactic Nuclei,” Astrophys. J. 831 (2016) no. 1, 68, arXiv:1606.00284.
  47. T. P. Adhikari, A. Różańska, K. Hryniewicz, B. Czerny, and G. J. Ferland, “On the Intermediate Line Region in AGNs,” Frontiers in Astronomy and Space Sciences 4 (2017) 19, arXiv:1709.07393.
  48. L. Wolfenstein, “Neutrino Oscillations in Matter,” Phys. Rev. D 17 (1978) 2369–2374.
  49. S. P. Mikheyev and A. Y. Smirnov, “Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos,” Sov. J. Nucl. Phys. 42 (1985) 913–917.
  50. S. P. Mikheev and A. Y. Smirnov, “Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy,” Nuovo Cim. C 9 (1986) 17–26.
  51. S. P. Mikheev and A. Y. Smirnov, “Neutrino Oscillations in an Inhomogeneous Medium: Adiabatic Regime,” Sov. Phys. JETP 65 (1987) 230–236.
  52. B. M. Peterson, “The Broad-Line Region in Active Galactic Nuclei,” in Physics of Active Galactic Nuclei at all Scales, D. Alloin, ed., vol. 693, p. 77. 2006.
  53. C. M. Gaskell, “What broad emission lines tell us about how active galactic nuclei work,” New Astronomy Reviews 53 (2009) no. 7-10, 140–148, arXiv:0908.0386.
  54. L. Braibant, D. Hutsemékers, D. Sluse, and R. Goosmann, “Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations,” Astronomy & Astrophysics 607 (2017) A32, arXiv:1707.09159.
  55. B. Laloux and P. Petitjean, “Towards modelling ghostly damped Ly α𝛼\alphaitalic_αs,” MNRAS 502 (2021) no. 3, 3855–3869, arXiv:2101.08218.
  56. A. S. Dighe and A. Y. Smirnov, “Identifying the neutrino mass spectrum from the neutrino burst from a supernova,” Phys. Rev. D 62 (2000) 033007, arXiv:hep-ph/9907423.
  57. S. Pakvasa, W. Rodejohann, and T. J. Weiler, “Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements,” JHEP 02 (2008) 005, arXiv:0711.4517.
  58. C.-Y. Chen, P. S. B. Dev, and A. Soni, “Two-component flux explanation for the high energy neutrino events at IceCube,” Phys. Rev. D 92 (2015) no. 7, 073001, arXiv:1411.5658.
  59. P. Lipari, M. Lusignoli, and D. Meloni, “Flavor Composition and Energy Spectrum of Astrophysical Neutrinos,” Phys. Rev. D 75 (2007) 123005, arXiv:0704.0718.
  60. O. Mena, S. Palomares-Ruiz, and A. C. Vincent, “Flavor Composition of the High-Energy Neutrino Events in IceCube,” Phys. Rev. Lett. 113 (2014) 091103, arXiv:1404.0017.
  61. A. Palladino, G. Pagliaroli, F. L. Villante, and F. Vissani, “What is the Flavor of the Cosmic Neutrinos Seen by IceCube?,” Phys. Rev. Lett. 114 (2015) no. 17, 171101, arXiv:1502.02923.
  62. M. Bustamante, J. F. Beacom, and W. Winter, “Theoretically palatable flavor combinations of astrophysical neutrinos,” Phys. Rev. Lett. 115 (2015) no. 16, 161302, arXiv:1506.02645.
  63. M. Bustamante and M. Ahlers, “Inferring the flavor of high-energy astrophysical neutrinos at their sources,” Phys. Rev. Lett. 122 (2019) no. 24, 241101, arXiv:1901.10087.
  64. A. Palladino, “The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario?,” Eur. Phys. J. C 79 (2019) no. 6, 500, arXiv:1902.08630.
  65. N. Song, S. W. Li, C. A. Argüelles, M. Bustamante, and A. C. Vincent, “The Future of High-Energy Astrophysical Neutrino Flavor Measurements,” JCAP 04 (2021) 054, arXiv:2012.12893.
  66. A. Comastri, “Compton thick AGN: The Dark side of the x-ray background,” Astrophys. Space Sci. Libr. 308 (2004) 245, arXiv:astro-ph/0403693.
  67. I. Georgantopoulos and A. Akylas, “NuSTAR observations of heavily obscured Swift/BAT AGN: constraints on the Compton-thick AGN fraction,” Astron. Astrophys. 621 (2019) A28, arXiv:1809.03747.
  68. I. Georgantopoulos, “Recent developments in the search for Compton-thick AGN,” Int. J. Mod. Phys. Conf. Ser. 23 (2013) 01099, arXiv:1204.2173.
  69. M. Brightman, K. Nandra, M. Salvato, L.-T. Hsu, C. Rangel, and J. Aird, “Compton thick active galactic nuclei in Chandra surveys,” Mon. Not. Roy. Astron. Soc. 443 (2014) no. 3, 1999–2017, arXiv:1406.4502.
  70. N. A. Levenson, “Compton Thick AGN,” in Multiwavelength AGN Surveys and Studies, A. M. Mickaelian and D. B. Sanders, eds., vol. 304, pp. 112–118. 2014.
  71. Q. Liu, D. F. G. Fiorillo, C. A. Argüelles, M. Bustamante, N. Song, and A. C. Vincent, “Identifying Energy-Dependent Flavor Transitions in High-Energy Astrophysical Neutrino Measurements,” arXiv:2312.07649.
  72. K. S. Babu, P. S. B. Dev, S. Jana, and Y. Sui, “Zee-Burst: A New Probe of Neutrino Nonstandard Interactions at IceCube,” Phys. Rev. Lett. 124 (2020) no. 4, 041805, arXiv:1908.02779.
  73. K. S. Babu, P. S. B. Dev, and S. Jana, “Probing neutrino mass models through resonances at neutrino telescopes,” Int. J. Mod. Phys. A 37 (2022) no. 11n12, 2230003, arXiv:2202.06975.
  74. S. Jana, Y. P. Porto-Silva, and M. Sen, “Exploiting a future galactic supernova to probe neutrino magnetic moments,” JCAP 09 (2022) 079, arXiv:2203.01950.
  75. S. Jana and Y. Porto, “New Resonances of Supernova Neutrinos in Twisting Magnetic Fields,” arXiv:2303.13572.
  76. C. A. Argüelles, T. Katori, and J. Salvado, “New Physics in Astrophysical Neutrino Flavor,” Phys. Rev. Lett. 115 (2015) 161303, arXiv:1506.02043.
  77. I. M. Shoemaker and K. Murase, “Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes,” Phys. Rev. D 93 (2016) no. 8, 085004, arXiv:1512.07228.
  78. M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and N. Song, “Non-standard neutrino interactions in the Earth and the flavor of astrophysical neutrinos,” Astropart. Phys. 84 (2016) 15–22, arXiv:1605.08055.
  79. V. Brdar, J. Kopp, and X.-P. Wang, “Sterile Neutrinos and Flavor Ratios in IceCube,” JCAP 01 (2017) 026, arXiv:1611.04598.
  80. K.-C. Lai, W.-H. Lai, and G.-L. Lin, “Constraining the mass scale of a Lorentz-violating Hamiltonian with the measurement of astrophysical neutrino-flavor composition,” Phys. Rev. D 96 (2017) no. 11, 115026, arXiv:1704.04027.
  81. Y. Farzan and S. Palomares-Ruiz, “Flavor of cosmic neutrinos preserved by ultralight dark matter,” Phys. Rev. D 99 (2019) no. 5, 051702, arXiv:1810.00892.
  82. V. Brdar and R. S. L. Hansen, “IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability,” JCAP 02 (2019) 023, arXiv:1812.05541.
  83. C. A. Argüelles, K. Farrag, T. Katori, R. Khandelwal, S. Mandalia, and J. Salvado, “Sterile neutrinos in astrophysical neutrino flavor,” JCAP 02 (2020) 015, arXiv:1909.05341.
  84. S. K. Agarwalla, M. Bustamante, S. Das, and A. Narang, “Present and future constraints on flavor-dependent long-range interactions of high-energy astrophysical neutrinos,” JHEP 08 (2023) 113, arXiv:2305.03675.
  85. B. Telalovic and M. Bustamante, “Flavor Anisotropy in the High-Energy Astrophysical Neutrino Sky,” arXiv:2310.15224.
  86. E. K. Akhmedov and T. Fukuyama, “Supernova prompt neutronization neutrinos and neutrino magnetic moments,” JCAP 12 (2003) 007, arXiv:hep-ph/0310119.
Citations (6)

Summary

We haven't generated a summary for this paper yet.