Identifying Energy-Dependent Flavor Transitions in High-Energy Astrophysical Neutrino Measurements (2312.07649v1)
Abstract: The flavor composition of TeV--PeV astrophysical neutrinos, i.e., the proportion of neutrinos of different flavors in their flux, is a versatile probe of high-energy astrophysics and fundamental physics. Because flavor identification is challenging and the number of detected high-energy astrophysical neutrinos is limited, so far measurements of the flavor composition have represented an average over the range of observed neutrino energies. Yet, this washes out the potential existence of changes in the flavor composition with energy and weakens our sensitivity to the many models that posit them. For the first time, we measure the energy dependence of the flavor composition, looking for a transition from low to high energies. Our present-day measurements, based on the 7.5-year public sample of IceCube High-Energy Starting Events (HESE), find no evidence of a flavor transition. The observation of HESE and through-going muons jointly by next-generation neutrino telescopes Baikal-GVD, IceCube-Gen2, KM3NeT, P-ONE, TAMBO, and TRIDENT may identify a flavor transition around 200TeV by 2030. By 2040, we could infer the flavor composition with which neutrinos are produced with enough precision to establish the transition from neutrino production via the full pion decay chain at low energies to muon-damped pion decay at high energies.
- W. Pauli, Dear radioactive ladies and gentlemen, Phys. Today 31N9, 27 (1978).
- M. Ahlers and F. Halzen, Opening a New Window onto the Universe with IceCube, Prog. Part. Nucl. Phys. 102, 73 (2018), arXiv:1805.11112 [astro-ph.HE] .
- M. Ackermann et al., Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51, 185 (2019a), arXiv:1903.04334 [astro-ph.HE] .
- F. Halzen and A. Kheirandish, Multimessenger Search for the Sources of Cosmic Rays Using Cosmic Neutrinos, Front. Astron. Space Sci. 6, 32 (2019).
- A. Palladino, M. Spurio, and F. Vissani, Neutrino Telescopes and High-Energy Cosmic Neutrinos, Universe 6, 30 (2020), arXiv:2009.01919 [astro-ph.HE] .
- R. Alves Batista et al., EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade, (2021), arXiv:2110.10074 [astro-ph.HE] .
- M. Ackermann et al., High-energy and ultra-high-energy neutrinos: A Snowmass white paper, JHEAp 36, 55 (2022), arXiv:2203.08096 [hep-ph] .
- C. Guépin, K. Kotera, and F. Oikonomou, High-energy neutrino transients and the future of multi-messenger astronomy, Nature Rev. Phys. 4, 697 (2022), arXiv:2207.12205 [astro-ph.HE] .
- M. Ahlers, K. Helbing, and C. Pérez de los Heros, Probing Particle Physics with IceCube, Eur. Phys. J. C 78, 924 (2018a), arXiv:1806.05696 [astro-ph.HE] .
- M. Ackermann et al., Fundamental physics with high-energy cosmic neutrinos, Bull. Am. Astron. Soc. 51, 215 (2019b), arXiv:1903.04333 [astro-ph.HE] .
- C. A. Argüelles et al., Snowmass white paper: beyond the Standard Model effects on neutrino flavor: Submitted to the proceedings of the US community study on the future of particle physics (Snowmass 2021), Eur. Phys. J. C 83, 15 (2023a), arXiv:2203.10811 [hep-ph] .
- R. Abbasi et al. (IceCube), The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, Phys. Rev. D 104, 022002 (2021a), arXiv:2011.03545 [astro-ph.HE] .
- IceCube Collaboration, HESE 7.5 year data release, https://icecube.wisc.edu/data-releases/2021/12/hese-7-5-year-data/ (2021).
- R. Abbasi et al. (IceCube), Detection of astrophysical tau neutrino candidates in IceCube, Eur. Phys. J. C 82, 1031 (2022a), arXiv:2011.03561 [hep-ex] .
- NuFIT 5.1, http://www.nu-fit.org/?q=node/238 (2021).
- M. G. Aartsen et al. (IceCube), The IceCube Neutrino Observatory: Instrumentation and Online Systems, JINST 12 (03), P03012, arXiv:1612.05093 [astro-ph.IM] .
- I. A. Belolaptikov et al. (BAIKAL), The Baikal underwater neutrino telescope: Design, performance and first results, Astropart. Phys. 7, 263 (1997).
- J. Ahrens et al. (AMANDA), Search for extraterrestrial point sources of neutrinos with AMANDA-II, Phys. Rev. Lett. 92, 071102 (2004), arXiv:astro-ph/0309585 .
- M. Ageron et al. (ANTARES), ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656, 11 (2011), arXiv:1104.1607 [astro-ph.IM] .
- J. G. Learned and K. Mannheim, High-energy neutrino astrophysics, Ann. Rev. Nucl. Part. Sci. 50, 679 (2000).
- M. G. Aartsen et al. (IceCube), Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342, 1242856 (2013), arXiv:1311.5238 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113, 101101 (2014), arXiv:1405.5303 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361, 147 (2018b), arXiv:1807.08794 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), Evidence for neutrino emission from the nearby active galaxy NGC 1068, Science 378, 538 (2022b), arXiv:2211.09972 [astro-ph.HE] .
- J. G. Learned and S. Pakvasa, Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys. 3, 267 (1995), arXiv:hep-ph/9405296 .
- S. Pakvasa, W. Rodejohann, and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements, JHEP 02, 005, arXiv:0711.4517 [hep-ph] .
- O. Mena, S. Palomares-Ruiz, and A. C. Vincent, Flavor Composition of the High-Energy Neutrino Events in IceCube, Phys. Rev. Lett. 113, 091103 (2014), arXiv:1404.0017 [astro-ph.HE] .
- S. Palomares-Ruiz, A. C. Vincent, and O. Mena, Spectral analysis of the high-energy IceCube neutrinos, Phys. Rev. D 91, 103008 (2015), arXiv:1502.02649 [astro-ph.HE] .
- M. Bustamante, J. F. Beacom, and W. Winter, Theoretically palatable flavor combinations of astrophysical neutrinos, Phys. Rev. Lett. 115, 161302 (2015), arXiv:1506.02645 [astro-ph.HE] .
- C. A. Argüelles, T. Katori, and J. Salvadó, New Physics in Astrophysical Neutrino Flavor, Phys. Rev. Lett. 115, 161303 (2015), arXiv:1506.02043 [hep-ph] .
- A. C. Vincent, S. Palomares-Ruiz, and O. Mena, Analysis of the 4-year IceCube high-energy starting events, Phys. Rev. D 94, 023009 (2016), arXiv:1605.01556 [astro-ph.HE] .
- V. Brdar, J. Kopp, and X.-P. Wang, Sterile Neutrinos and Flavor Ratios in IceCube, JCAP 01, 026, arXiv:1611.04598 [hep-ph] .
- M. Bustamante, J. F. Beacom, and K. Murase, Testing decay of astrophysical neutrinos with incomplete information, Phys. Rev. D 95, 063013 (2017), arXiv:1610.02096 [astro-ph.HE] .
- N. Klop and S. Ando, Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos, Phys. Rev. D 97, 063006 (2018), arXiv:1712.05413 [hep-ph] .
- Y. Farzan and S. Palomares-Ruiz, Flavor of cosmic neutrinos preserved by ultralight dark matter, Phys. Rev. D 99, 051702 (2019), arXiv:1810.00892 [hep-ph] .
- M. Ahlers, M. Bustamante, and S. Mu, Unitarity Bounds of Astrophysical Neutrinos, Phys. Rev. D 98, 123023 (2018b), arXiv:1810.00893 [astro-ph.HE] .
- M. Bustamante and S. K. Agarwalla, Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos, Phys. Rev. Lett. 122, 061103 (2019), arXiv:1808.02042 [astro-ph.HE] .
- M. Ahlers, M. Bustamante, and N. G. N. Willesen, Flavors of astrophysical neutrinos with active-sterile mixing, JCAP 07, 029, arXiv:2009.01253 [hep-ph] .
- C. A. Argüelles and J. Salvadó, Sterile Neutrinos with Neutrino Telescopes, Universe 7, 426 (2021), arXiv:2111.03357 [hep-ph] .
- B. Telalovic and M. Bustamante, Flavor Anisotropy in the High-Energy Astrophysical Neutrino Sky, (2023), arXiv:2310.15224 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, Astrophys. J. 809, 98 (2015a), arXiv:1507.03991 [astro-ph.HE] .
- M. Bustamante and M. Ahlers, Inferring the flavor of high-energy astrophysical neutrinos at their sources, Phys. Rev. Lett. 122, 241101 (2019), arXiv:1901.10087 [astro-ph.HE] .
- A. D. Avrorin et al. (Baikal-GVD), Baikal-GVD: status and prospects, EPJ Web Conf. 191, 01006 (2018), arXiv:1808.10353 [astro-ph.IM] .
- M. G. Aartsen et al. (IceCube-Gen2), IceCube-Gen2: the window to the extreme Universe, J. Phys. G 48, 060501 (2021a), arXiv:2008.04323 [astro-ph.HE] .
- S. Adrián-Martínez et al. (KM3Net), Letter of intent for KM3NeT 2.0, J. Phys. G 43, 084001 (2016), arXiv:1601.07459 [astro-ph.IM] .
- M. Agostini et al. (P-ONE), The Pacific Ocean Neutrino Experiment, Nature Astron. 4, 913 (2020a), arXiv:2005.09493 [astro-ph.HE] .
- W. G. Thompson (TAMBO), TAMBO: Searching for Tau Neutrinos in the Peruvian Andes, in 38th International Cosmic Ray Conference (2023) arXiv:2308.09753 [astro-ph.HE] .
- Z. P. Ye et al., Proposal for a neutrino telescope in South China Sea, Nature Astron. 10.1038/s41550-023-02087-6 (2023), arXiv:2207.04519 [astro-ph.HE] .
- A. M. Hillas, The Origin of Ultrahigh-Energy Cosmic Rays, Ann. Rev. Astron. Astrophys. 22, 425 (1984).
- L. A. Anchordoqui, Ultra-High-Energy Cosmic Rays, Phys. Rept. 801, 1 (2019), arXiv:1807.09645 [astro-ph.HE] .
- R. Alves Batista et al., Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Front. Astron. Space Sci. 6, 23 (2019), arXiv:1903.06714 [astro-ph.HE] .
- S. H. Margolis, D. N. Schramm, and R. Silberberg, Ultrahigh-Energy Neutrino Astronomy, Astrophys. J. 221, 990 (1978).
- F. Stecker, Diffuse Fluxes of Cosmic High-Energy Neutrinos, Astrophys. J. 228, 919 (1979).
- K. Abe et al. (Hyper-Kamiokande), Hyper-Kamiokande Design Report, (2018), arXiv:1805.04163 [physics.ins-det] .
- F. An et al. (JUNO), Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016), arXiv:1507.05613 [physics.ins-det] .
- T. Kashti and E. Waxman, Flavoring astrophysical neutrinos: Flavor ratios depend on energy, Phys. Rev. Lett. 95, 181101 (2005), arXiv:astro-ph/0507599 .
- P. Lipari, M. Lusignoli, and D. Meloni, Flavor Composition and Energy Spectrum of Astrophysical Neutrinos, Phys. Rev. D 75, 123005 (2007), arXiv:0704.0718 [astro-ph] .
- P. Baerwald, S. Hümmer, and W. Winter, Systematics in the Interpretation of Aggregated Neutrino Flux Limits and Flavor Ratios from Gamma-Ray Bursts, Astropart. Phys. 35, 508 (2012a), arXiv:1107.5583 [astro-ph.HE] .
- M. Bustamante and I. Tamborra, Using high-energy neutrinos as cosmic magnetometers, Phys. Rev. D 102, 123008 (2020), arXiv:2009.01306 [astro-ph.HE] .
- K. Murase, S. S. Kimura, and P. Mészáros, Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection, Phys. Rev. Lett. 125, 011101 (2020), arXiv:1904.04226 [astro-ph.HE] .
- K. Riabtsev and S. Troitsky, Energy-dependent flavor ratios, cascade/track spectrum tension and high-energy neutrinos from magnetospheres of supermassive black holes, Phys. Lett. B 839, 137758 (2023), arXiv:2204.09339 [astro-ph.HE] .
- P. Mehta and W. Winter, Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects, JCAP 03, 041, arXiv:1101.2673 [hep-ph] .
- P. Baerwald, M. Bustamante, and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10, 020, arXiv:1208.4600 [astro-ph.CO] .
- I. M. Shoemaker and K. Murase, Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes, Phys. Rev. D 93, 085004 (2016), arXiv:1512.07228 [astro-ph.HE] .
- P. B. Denton and I. Tamborra, Invisible Neutrino Decay Could Resolve IceCube’s Track and Cascade Tension, Phys. Rev. Lett. 121, 121802 (2018), arXiv:1805.05950 [hep-ph] .
- M. Bustamante, New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, (2020), arXiv:2004.06844 [astro-ph.HE] .
- A. Abdullahi and P. B. Denton, Visible Decay of Astrophysical Neutrinos at IceCube, Phys. Rev. D 102, 023018 (2020), arXiv:2005.07200 [hep-ph] .
- G. Barenboim and C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D 67, 073024 (2003), arXiv:hep-ph/0301220 .
- M. Bustamante, A. M. Gago, and C. Peña-Garay, Energy-Independent New Physics in the Flavour Ratios of High-Energy Astrophysical Neutrinos, JHEP 04, 066, arXiv:1001.4878 [hep-ph] .
- C. A. Argüelles and T. Katori, Lorentz Symmetry and High-Energy Neutrino Astronomy, Universe 7, 490 (2021), arXiv:2109.13973 [hep-ph] .
- F. Testagrossa, D. F. G. Fiorillo, and M. Bustamante, Two-detector flavor sensitivity to ultra-high-energy cosmic neutrinos, (2023), arXiv:2310.12215 [astro-ph.HE] .
- S. Karmakar, S. Pandey, and S. Rakshit, Astronomy with energy dependent flavour ratios of extragalactic neutrinos, JHEP 10, 004, arXiv:2010.07336 [hep-ph] .
- C. A. Argüelles, K. Farrag, and T. Katori, Ultra-light Dark Matter Limits from Astrophysical Neutrino Flavour, PoS ICRC2023, 1415 (2023b).
- J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42, 101267 (2023), arXiv:2203.01955 [hep-ph] .
- T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, (2022), arXiv:2211.16520 [hep-ph] .
- M. Bustamante, A. M. Gago, and J. Jones Pérez, SUSY Renormalization Group Effects in Ultra High Energy Neutrinos, JHEP 05, 133, arXiv:1012.2728 [hep-ph] .
- H. Minakata and A. Y. Smirnov, High-energy cosmic neutrinos and the equivalence principle, Phys. Rev. D 54, 3698 (1996), arXiv:hep-ph/9601311 .
- A. Esmaili, Violation of Equivalence Principle in Neutrino Sector: Probing the Extended Parameter Space, JCAP 07, 018, arXiv:2105.08744 [hep-ph] .
- M. G. Aartsen et al. (IceCube), Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption, Nature 551, 596 (2017b), arXiv:1711.08119 [hep-ex] .
- M. Bustamante and A. Connolly, Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers, Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043 [astro-ph.HE] .
- M. Aartsen et al. (IceCube), Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube, Phys. Rev. D 99, 032004 (2019a), arXiv:1808.07629 [hep-ex] .
- R. Abbasi et al. (IceCube), Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube, Phys. Rev. D 104, 022001 (2021b), arXiv:2011.03560 [hep-ex] .
- S. W. Barwick and C. Glaser, Chapter 6: Radio Detection of High Energy Neutrinos in Ice, , 237 (2023), arXiv:2208.04971 [astro-ph.IM] .
- Z. Yao, M. Chen, and J. Liu, Progress on LHASSO and high-energy neutrino telescope (2023), Symposium on frontiers of underground and space particle physics and cosmophysics.
- D. F. G. Fiorillo and M. Bustamante, Bump hunting in the diffuse flux of high-energy cosmic neutrinos, Phys. Rev. D 107, 083008 (2023), arXiv:2301.00024 [astro-ph.HE] .
- Q. Liu, N. Song, and A. C. Vincent, Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow resonance, Phys. Rev. D 108, 043022 (2023), arXiv:2304.06068 [astro-ph.HE] .
- M. Aartsen et al. (IceCube), The IceCube Neutrino Observatory: Instrumentation and Online Systems, JINST 12 (03), P03012, arXiv:1612.05093 [astro-ph.IM] .
- M. G. Aartsen et al. (IceCube), Neutrino astronomy with the next generation IceCube Neutrino Observatory, (2019b), arXiv:1911.02561 [astro-ph.HE] .
- G. Safronov (Baikal-GVD), Baikal-GVD: status and first results, in 40th International Conference on High Energy Physics (2020) arXiv:2012.03373 [astro-ph.HE] .
- V. A. Allakhverdyan et al. (Baikal-GVD), High-energy neutrino-induced cascade from the direction of the flaring radio blazar TXS 0506+056 observed by the Baikal Gigaton Volume Detector in 2021, (2022), arXiv:2210.01650 [astro-ph.HE] .
- V. A. Allakhverdyan et al. (Baikal-GVD), Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope, Phys. Rev. D 107, 042005 (2023), arXiv:2211.09447 [astro-ph.HE] .
- M. Agostini et al. (P-ONE), The Pacific Ocean Neutrino Experiment, Nature Astron. 4, 913 (2020b), arXiv:2005.09493 [astro-ph.HE] .
- A. Romero-Wolf et al., An Andean Deep-Valley Detector for High-Energy Tau Neutrinos, in Latin American Strategy Forum for Research Infrastructure (2020) arXiv:2002.06475 [astro-ph.IM] .
- R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
- S. L. Glashow, Resonant Scattering of Antineutrinos, Phys. Rev. 118, 316 (1960).
- M. G. Aartsen et al. (IceCube), Detection of a particle shower at the Glashow resonance with IceCube, Nature 591, 220 (2021b), [Erratum: Nature 592, E11 (2021)], arXiv:2110.15051 [hep-ex] .
- G.-y. Huang and Q. Liu, Hunting the Glashow Resonance with PeV Neutrino Telescopes, JCAP 03, 005, arXiv:1912.02976 [hep-ph] .
- G.-y. Huang, M. Lindner, and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (1), 164, arXiv:2303.13706 [hep-ph] .
- M. G. Aartsen et al. (IceCube), Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube, Phys. Rev. Lett. 114, 171102 (2015b), arXiv:1502.03376 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data, Astrophys. J. 928, 50 (2022c), arXiv:2111.10299 [astro-ph.HE] .
- R. Naab, E. Ganster, and Z. Zhang (IceCube), Measurement of the astrophysical diffuse neutrino flux in a combined fit of IceCube’s high energy neutrino data, in 38th International Cosmic Ray Conference (2023) arXiv:2308.00191 [astro-ph.HE] .
- N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63, 053010 (2001), arXiv:hep-ph/0009174 .
- C. A. Argüelles, A. Schneider, and T. Yuan, A binned likelihood for stochastic models, JHEP 06, 030, arXiv:1901.04645 [physics.data-an] .
- Mceq, https://github.com/mceq-project/MCEq.
- R. Abbasi et al. (IceCube), IceCube Data for Neutrino Point-Source Searches Years 2008-2018 10.21234/CPKQ-K003 (2021c), arXiv:2101.09836 [astro-ph.HE] .
- J. Buchner, A statistical test for Nested Sampling algorithms, Statistics and Computing 26, 383 (2016), arXiv:1407.5459 [stat.CO] .
- J. Buchner, Collaborative Nested Sampling: Big Data vs. complex physical models, Publications of the Astronomical Society of the Pacific 131, 108005 (2019), arXiv:1707.04476 [stat.CO] .
- J. Buchner, UltraNest — a robust, general purpose Bayesian inference engine, The Journal of Open Source Software 6, 3001 (2021), arXiv:2101.09604 [stat.CO] .
- H. Jeffreys, The Theory of Probability, Oxford Classic Texts in the Physical Sciences (OUP Oxford, 1998).
- V. Basu et al. (IceCube), From PeV to TeV: Astrophysical Neutrinos with Contained Vertices in 10 years of IceCube Data, PoS ICRC2023, 1007 (2023), arXiv:2307.15183 [astro-ph.HE] .
- M. Huennefeld et al. (IceCube), Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube, PoS ICRC2021, 1065 (2021), arXiv:2107.12110 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), Graph Neural Networks for low-energy event classification & reconstruction in IceCube, JINST 17 (11), P11003, arXiv:2209.03042 [hep-ex] .
- R. Abbasi et al. (IceCube), Observation of high-energy neutrinos from the Galactic plane, Science 380, adc9818 (2023a), arXiv:2307.04427 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), Summary of IceCube tau neutrino searches and flavor composition measurements of the diffuse astrophysical neutrino flux, PoS ICRC2023, 1122 (2023b), arXiv:2308.15213 [astro-ph.HE] .
- S. W. Li, M. Bustamante, and J. F. Beacom, Echo Technique to Distinguish Flavors of Astrophysical Neutrinos, Phys. Rev. Lett. 122, 151101 (2019), arXiv:1606.06290 [astro-ph.HE] .
- A. Steuer and L. Köpke (IceCube), Delayed light emission to distinguish astrophysical neutrino flavors in IceCube, PoS ICRC2017, 1008 (2018).
- K. Farrag et al., Distinguishing ντsubscript𝜈𝜏\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT neutrinos using the neutron echo technique with next generation ice Cherenkov telescopes, PoS ICRC2023, 1211 (2023).