Papers
Topics
Authors
Recent
2000 character limit reached

RefineNet: Enhancing Text-to-Image Conversion with High-Resolution and Detail Accuracy through Hierarchical Transformers and Progressive Refinement (2312.17274v1)

Published 27 Dec 2023 in cs.CV, cs.AI, and cs.LG

Abstract: In this research, we introduce RefineNet, a novel architecture designed to address resolution limitations in text-to-image conversion systems. We explore the challenges of generating high-resolution images from textual descriptions, focusing on the trade-offs between detail accuracy and computational efficiency. RefineNet leverages a hierarchical Transformer combined with progressive and conditional refinement techniques, outperforming existing models in producing detailed and high-quality images. Through extensive experiments on diverse datasets, we demonstrate RefineNet's superiority in clarity and resolution, particularly in complex image categories like animals, plants, and human faces. Our work not only advances the field of image-to-text conversion but also opens new avenues for high-fidelity image generation in various applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.