Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The emergence of Einstein gravity from topological supergravity in $3+1$D (2312.17196v1)

Published 28 Dec 2023 in gr-qc and hep-th

Abstract: The topological aspects of Einstein gravity suggest that topological invariance could be a more profound principle in understanding quantum gravity. In this work, we explore a topological supergravity action that initially describes a universe without Riemann curvature, which seems trivial. However, we made a surprising discovery by introducing a small deformation parameter $\lambda$, which can be regarded as an AdS generalization of supersymmetry (SUSY). We find that the deformed topological quantum field theory (TQFT) becomes unstable at low energy, resulting in the emergence of a classical metric, whose dynamics are controlled by the Einstein equation. Our findings suggest that a quantum theory of gravity could be governed by a UV fixed point of a SUSY TQFT, and classical spacetime ceases to exist beyond the Planck scale.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. P. Agrawal, S. Gukov, G. Obied,  and C. Vafa, “Topological gravity as the early phase of our universe,”  (2020), arXiv:2009.10077 [hep-th] .
  2. R. Raitio, “The fate of supersymmetry in topological quantum field theories,”  (2023), arXiv:2307.13017 [hep-ph] .
  3. D. J. Gross, Phys. Rev. Lett. 60, 1229 (1988).
  4. E. Witten, Physics Letters B 206, 601 (1988a).
  5. E. Witten, “Three-dimensional gravity revisited,”  (2007), arXiv:0706.3359 [hep-th] .
  6. E. Witten, Nuclear Physics B 311, 46 (1988b).
  7. A. Chamseddine, Nuclear Physics B 346, 213 (1990).
  8. A. Chamseddine, Physics Letters B 233, 291 (1989).
  9. Physics Letters B 228, 75 (1989).
  10. F. Izaurieta, E. Rodríguez,  and P. Salgado, “On transgression forms and chern–simons (super)gravity,”  (2006a), arXiv:hep-th/0512014 [hep-th] .
  11. F. Izaurieta, E. Rodríguez,  and P. Salgado, “On transgression forms and chern–simons (super)gravity,”  (2006b), arXiv:hep-th/0512014 [hep-th] .
  12. A. M. Polyakov, Gauge Fields and Strings, Vol. 3 (1987).
  13. S. W. Hawking, Communications in Mathematical Physics 55, 133 (1977).
  14. D. Vassilevich, Physics Reports 388, 279 (2003).
  15. R. S. Jasinschi and A. W. Smith, “Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field,”  (1984).
  16. R. Jasinschi and A. W. Smith, Physics Letters B 173, 297 (1986).
  17. R. Ishikawa and S. V. Ketov, Progress of Theoretical and Experimental Physics 2020 (2020), 10.1093/ptep/ptz152.
  18. D. Z. Freedman and A. Van Proeyen, Supergravity (Cambridge Univ. Press, Cambridge, UK, 2012).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.