Proving the 6d a-theorem with the double affine Grassmannian (2312.17178v2)
Abstract: This paper contains two results of independent interest, the first being more mathematical in nature whereas the second more physical. We first show that the hierarchy of Higgs branch RG flows between the 6d $(1,0)$ SCFTs known as A-type orbi-instantons is given by the Hasse diagram of certain strata and transverse slices in the double affine Grassmannian of $E_8$. Secondly, we leverage the partial order naturally defined on this Hasse diagram to prove the $a$-theorem for orbi-instanton Higgs branch RG flows, thereby exhausting the list of $c$-theorems in the even-dimensional (supersymmetric) setting.
- A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory,” JETP Lett. 43 (1986) 730–732.
- J. Polchinski, “Scale and Conformal Invariance in Quantum Field Theory,” Nucl. Phys. B 303 (1988) 226–236.
- M. A. Luty, J. Polchinski, and R. Rattazzi, “The a𝑎aitalic_a-theorem and the Asymptotics of 4D Quantum Field Theory,” JHEP 01 (2013) 152, 1204.5221.
- K. Yonekura, “Unitarity, Locality, and Scale versus Conformal Invariance in Four Dimensions,” 1403.4939.
- Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569 (2015) 1–93, 1302.0884.
- D. M. Capper and M. J. Duff, “Trace anomalies in dimensional regularization,” Nuovo Cim. A 23 (1974) 173–183.
- D. M. Capper and M. J. Duff, “Conformal Anomalies and the Renormalizability Problem in Quantum Gravity,” Phys. Lett. A 53 (1975) 361.
- M. J. Duff, “Observations on Conformal Anomalies,” Nucl. Phys. B 125 (1977) 334–348.
- S. M. Christensen and M. J. Duff, “Axial and Conformal Anomalies for Arbitrary Spin in Gravity and Supergravity,” Phys. Lett. B 76 (1978) 571.
- M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quant. Grav. 11 (1994) 1387–1404, hep-th/9308075.
- C. Córdova, T. T. Dumitrescu, and K. Intriligator, “𝒩𝒩\mathcal{N}caligraphic_N = (1, 0) anomaly multiplet relations in six dimensions,” JHEP 07 (2020) 065, 1912.13475.
- L. Bonora, P. Pasti, and M. Bregola, “WEYL COCYCLES,” Class. Quant. Grav. 3 (1986) 635.
- S. Deser and A. Schwimmer, “Geometric classification of conformal anomalies in arbitrary dimensions,” Phys. Lett. B 309 (1993) 279–284, hep-th/9302047.
- M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” JHEP 07 (1998) 023, hep-th/9806087.
- L. Bonora, “Addendum: Weyl cocycles, (1986 Class. Quantum Grav. 3 635),” Class. Quant. Grav. 40 (2023), no. 14, 149401, 2305.09375.
- C. Cordova, T. T. Dumitrescu, and K. Intriligator, “2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field Theories,” JHEP 04 (2021) 252, 2009.00138.
- D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and charge correlations,” JHEP 05 (2008) 012, 0803.1467.
- D. Karateev, Z. Komargodski, J. Penedones, and B. Sahoo, “Trace Anomalies and the Graviton-Dilaton Amplitude,” 2312.09308.
- J. L. Cardy, “Is there a c-theorem in four dimensions?,” Physics Letters B 215 (1988), no. 4, 749–752.
- H. Osborn, “Derivation of a Four-dimensional c𝑐citalic_c Theorem,” Phys. Lett. B 222 (1989) 97–102.
- I. Jack and H. Osborn, “Analogs for the c𝑐citalic_c Theorem for Four-dimensional Renormalizable Field Theories,” Nucl. Phys. B 343 (1990) 647–688.
- H. Osborn, “Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories,” Nucl. Phys. B 363 (1991) 486–526.
- Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12 (2011) 099, 1107.3987.
- A. Schwimmer and S. Theisen, “Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching,” Nucl. Phys. B 847 (2011) 590–611, 1011.0696.
- Z. Komargodski, “The Constraints of Conformal Symmetry on RG Flows,” JHEP 07 (2012) 069, 1112.4538.
- D. Anselmi, “Anomalies, unitarity and quantum irreversibility,” Annals Phys. 276 (1999) 361–390, hep-th/9903059.
- P. H. Ginsparg, “APPLIED CONFORMAL FIELD THEORY,” in Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena. 9, 1988. hep-th/9108028.
- F. Apruzzi, G. Dibitetto, and L. Tizzano, “A new 6d fixed point from holography,” JHEP 11 (2016) 126, 1603.06576.
- P. Benetti Genolini, M. Honda, H.-C. Kim, D. Tong, and C. Vafa, “Evidence for a Non-Supersymmetric 5d CFT from Deformations of 5d SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) SYM,” JHEP 05 (2020) 058, 2001.00023.
- M. Akhond, M. Honda, and F. Mignosa, “5d SCFTs and their non-supersymmetric cousins,” 2307.13724.
- M. Dierigl, J. J. Heckman, M. Montero, and E. Torres, “IIB Explored: Reflection 7-Branes,” 2212.05077.
- T. R. Morris, “Renormalizable extra-dimensional models,” JHEP 01 (2005) 002, hep-ph/0410142.
- M. Suh, “The non-SUSY AdS66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT and AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT fixed points are brane-jet unstable,” JHEP 10 (2020) 010, 2004.06823.
- M. Bertolini and F. Mignosa, “Supersymmetry breaking deformations and phase transitions in five dimensions,” JHEP 10 (2021) 244, 2109.02662.
- M. Bertolini, F. Mignosa, and J. van Muiden, “On non-supersymmetric fixed points in five dimensions,” JHEP 10 (2022) 064, 2207.11162.
- F. Mignosa, “Complete prepotentials of 5d higher rank theories,” 2309.11426.
- F. Apruzzi, G. Bruno De Luca, A. Gnecchi, G. Lo Monaco, and A. Tomasiello, “On AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT stability,” JHEP 07 (2020) 033, 1912.13491.
- F. Apruzzi, G. Bruno De Luca, G. Lo Monaco, and C. F. Uhlemann, “Non-supersymmetric AdS66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT and the swampland,” JHEP 12 (2021) 187, 2110.03003.
- R. J. Riegert, “A Nonlocal Action for the Trace Anomaly,” Phys. Lett. B 134 (1984) 56–60.
- E. S. Fradkin and A. A. Tseytlin, “Conformal Anomaly in Weyl Theory and Anomaly Free Superconformal Theories,” Phys. Lett. B 134 (1984) 187.
- G. Gabadadze, “A new gravitational action for the trace anomaly,” Phys. Lett. B 843 (2023) 138031, 2301.13265.
- H. Elvang, D. Z. Freedman, L.-Y. Hung, M. Kiermaier, R. C. Myers, and S. Theisen, “On renormalization group flows and the a-theorem in 6d,” JHEP 10 (2012) 011, 1205.3994.
- S. Kundu, “Renormalization Group Flows, the a𝑎aitalic_a-Theorem and Conformal Bootstrap,” JHEP 05 (2020) 014, 1912.09479.
- B. Grinstein, D. Stone, A. Stergiou, and M. Zhong, “Challenge to the a𝑎aitalic_a Theorem in Six Dimensions,” Phys. Rev. Lett. 113 (2014), no. 23, 231602, 1406.3626.
- J. A. Gracey, I. Jack, and C. Poole, “The a-function in six dimensions,” JHEP 01 (2016) 174, 1507.02174.
- H. Osborn and A. Stergiou, “Structures on the Conformal Manifold in Six Dimensional Theories,” JHEP 04 (2015) 157, 1501.01308.
- A. Stergiou, D. Stone, and L. G. Vitale, “Constraints on Perturbative RG Flows in Six Dimensions,” JHEP 08 (2016) 010, 1604.01782.
- H. Casini, I. Salazar Landea, and G. Torroba, “Irreversibility, QNEC, and defects,” JHEP 07 (2023) 004, 2303.16935.
- D. Anselmi, “Quantum irreversibility in arbitrary dimension,” Nucl. Phys. B 567 (2000) 331–359, hep-th/9905005.
- D. Anselmi, “Towards the classification of conformal field theories in arbitrary dimension,” Phys. Lett. B 476 (2000) 182–187, hep-th/9908014.
- D. Anselmi and G. Festuccia, “Search for flow invariants in even and odd dimensions,” New J. Phys. 5 (2003) 11, hep-th/0209252.
- H. Casini and M. Huerta, “A Finite entanglement entropy and the c-theorem,” Phys. Lett. B 600 (2004) 142–150, hep-th/0405111.
- H. Casini and M. Huerta, “A c-theorem for the entanglement entropy,” J. Phys. A 40 (2007) 7031–7036, cond-mat/0610375.
- H. Casini and M. Huerta, “On the RG running of the entanglement entropy of a circle,” Phys. Rev. D 85 (2012) 125016, 1202.5650.
- H. Casini, E. Teste, and G. Torroba, “Modular Hamiltonians on the null plane and the Markov property of the vacuum state,” J. Phys. A 50 (2017), no. 36, 364001, 1703.10656.
- H. Casini, E. Testé, and G. Torroba, “Markov Property of the Conformal Field Theory Vacuum and the a Theorem,” Phys. Rev. Lett. 118 (2017), no. 26, 261602, 1704.01870.
- T. Hartman and G. Mathys, “Averaged Null Energy and the Renormalization Group,” 2309.14409.
- R. C. Myers and A. Sinha, “Seeing a c-theorem with holography,” Phys. Rev. D 82 (2010) 046006, 1006.1263.
- R. C. Myers and A. Sinha, “Holographic c-theorems in arbitrary dimensions,” JHEP 01 (2011) 125, 1011.5819.
- J. J. Heckman, S. Kundu, and H. Y. Zhang, “Effective field theory of 6D SUSY RG Flows,” Phys. Rev. D 104 (2021), no. 8, 085017, 2103.13395.
- W. Nahm, “Supersymmetries and their Representations,” Nucl. Phys. B 135 (1978) 149.
- S. Minwalla, “Restrictions imposed by superconformal invariance on quantum field theories,” Adv. Theor. Math. Phys. 2 (1998) 783–851, hep-th/9712074.
- C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Multiplets of Superconformal Symmetry in Diverse Dimensions,” JHEP 03 (2019) 163, 1612.00809.
- J. Louis and S. Lüst, “Supersymmetric AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs,” JHEP 10 (2015) 120, 1506.08040.
- C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Deformations of Superconformal Theories,” JHEP 11 (2016) 135, 1602.01217.
- C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories,” JHEP 10 (2016) 080, 1506.03807.
- C. Cordova, T. T. Dumitrescu, and X. Yin, “Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories,” JHEP 10 (2019) 128, 1505.03850.
- T. Maxfield and S. Sethi, “The Conformal Anomaly of M5-Branes,” JHEP 06 (2012) 075, 1204.2002.
- M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa, “6d Conformal Matter,” JHEP 02 (2015) 054, 1407.6359.
- N. Mekareeya, T. Rudelius, and A. Tomasiello, “T-branes, Anomalies and Moduli Spaces in 6D SCFTs,” JHEP 10 (2017) 158, 1612.06399.
- D. Gaiotto and A. Tomasiello, “Holography for (1,0) theories in six dimensions,” JHEP 12 (2014) 003, 1404.0711.
- J. J. Heckman and T. Rudelius, “Evidence for C-theorems in 6D SCFTs,” JHEP 09 (2015) 218, 1506.06753.
- S. Cremonesi and A. Tomasiello, “6D Holographic Anomaly Match as a Continuum Limit,” JHEP 05 (2016) 031, 1512.02225.
- F. Apruzzi and M. Fazzi, “AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT/CFT66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT with orientifolds,” JHEP 01 (2018) 124, 1712.03235.
- J. J. Heckman, T. Rudelius, and A. Tomasiello, “Fission, Fusion, and 6D RG Flows,” JHEP 02 (2019) 167, 1807.10274.
- N. Mekareeya, K. Ohmori, Y. Tachikawa, and G. Zafrir, “E88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT instantons on type-A ALE spaces and supersymmetric field theories,” JHEP 09 (2017) 144, 1707.04370.
- H. Nakajima, “Towards a mathematical definition of Coulomb branches of 3333-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 gauge theories, I,” Adv. Theor. Math. Phys. 20 (2016) 595–669, 1503.03676.
- M. Fazzi and S. Giri, “Hierarchy of RG flows in 6d (1, 0) orbi-instantons,” JHEP 12 (2022) 076, 2208.11703.
- S. Cabrera and A. Hanany, “Quiver Subtractions,” JHEP 09 (2018) 008, 1803.11205.
- M. Fazzi, S. Giacomelli, and S. Giri, “Hierarchies of RG flows in 6d (1, 0) massive E-strings,” JHEP 03 (2023) 089, 2212.14027.
- A. Braverman and M. Finkelberg, “Pursuing the Double Affine Grassmannian I: Transversal Slices via Instantons on Aksubscript𝐴𝑘A_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT-Singularities,” Duke Math. J. 152 (2010) 175–206, 0711.2083.
- A. Braverman and M. Finkelberg, “Pursuing the double affine Grassmannian II: Convolution,” Advances in Mathematics 230 (2012), no. 1, 414–432.
- A. Braverman and M. Finkelberg, “Pursuing the Double Affine Grassmannian III: Convolution with Affine Zastava,” Moscow Mathematical Journal 13 (10, 2010).
- M. Bullimore, T. Dimofte, and D. Gaiotto, “The Coulomb Branch of 3d 𝒩=4𝒩4{\mathcal{N}=4}caligraphic_N = 4 Theories,” Commun. Math. Phys. 354 (2017), no. 2, 671–751, 1503.04817.
- J. R. Stembridge, “The partial order of dominant weights,” Advances in Mathematics 136 (1998), no. 2, 340–364.
- A. Braverman, M. Finkelberg, and H. Nakajima, “Coulomb branches of 3d3𝑑3d3 italic_d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 quiver gauge theories and slices in the affine Grassmannian,” Adv. Theor. Math. Phys. 23 (2019) 75–166, 1604.03625.
- H. Nakajima, “Questions on provisional Coulomb branches of 3333-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 gauge theories,” 1510.03908.
- M. Bullimore, T. Dimofte, D. Gaiotto, and J. Hilburn, “Boundaries, Mirror Symmetry, and Symplectic Duality in 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Gauge Theory,” JHEP 10 (2016) 108, 1603.08382.
- M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn, and H.-C. Kim, “Vortices and Vermas,” Adv. Theor. Math. Phys. 22 (2018) 803–917, 1609.04406.
- A. Bourget, J. F. Grimminger, A. Hanany, M. Sperling, and Z. Zhong, “Branes, Quivers, and the Affine Grassmannian,” Adv. Stud. Pure Math. 88 (2023) 331–435, 2102.06190.
- A. Beauville, “Symplectic singularities,” Inventiones Mathematicae 139 (Mar., 2000) 541–549.
- J. Bagger and E. Witten, “Matter Couplings in N=2 Supergravity,” Nucl. Phys. B 222 (1983) 1–10.
- I. Mirković and K. Vilonen, “Geometric langlands duality and representations of algebraic groups over commutative rings,” Annals of Mathematics 166 (2007) 95–143.
- M. Finkelberg, “Doule affine Grassmannians and Coulomb branches of 3d N=4 quiver gauge theories,” in International Congress of Mathematicians, pp. 1279–1298. 2018. 1712.03039.
- H. Nakajima and Y. Takayama, “Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A𝐴Aitalic_A,” 1606.02002.
- S. A. Cherkis, “Moduli Spaces of Instantons on the Taub-NUT Space,” Commun. Math. Phys. 290 (2009) 719–736, 0805.1245.
- S. A. Cherkis, “Instantons on the Taub-NUT Space,” Adv. Theor. Math. Phys. 14 (2010), no. 2, 609–642, 0902.4724.
- S. A. Cherkis, “Instantons on Gravitons,” Commun. Math. Phys. 306 (2011) 449–483, 1007.0044.
- H. Nakajima, “Towards geometric Satake correspondence for Kac-Moody algebras – Cherkis bow varieties and affine Lie algebras of type A𝐴Aitalic_A,” 1810.04293.
- S. Cherkis, “Instantons and Monopoles.” https://www.icts.res.in/discussion-meeting/qftgrt2018/talks, 2018.
- K. Roy, “Lattice of dominant weights of affine Kac–Moody algebras,” Journal of Algebraic Combinatorics 54 (2021), no. 1, 381–397.
- A. Bourget and J. F. Grimminger, “Fibrations and Hasse diagrams for 6d SCFTs,” JHEP 12 (2022) 159, 2209.15016.
- J. J. Heckman, T. Rudelius, and A. Tomasiello, “6D RG Flows and Nilpotent Hierarchies,” JHEP 07 (2016) 082, 1601.04078.
- F. Apruzzi, M. Fazzi, J. J. Heckman, T. Rudelius, and H. Y. Zhang, “General prescription for global U(1)𝑈1U(1)italic_U ( 1 )’s in 6D SCFTs,” Phys. Rev. D 101 (2020), no. 8, 086023, 2001.10549.
- F. Apruzzi, M. Fazzi, D. Rosa, and A. Tomasiello, “All AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT solutions of type II supergravity,” JHEP 04 (2014) 064, 1309.2949.
- O. Bergman, M. Fazzi, D. Rodríguez-Gómez, and A. Tomasiello, “Charges and holography in 6d (1,0) theories,” JHEP 05 (2020) 138, 2002.04036.
- A. Bourget, J. F. Grimminger, A. Hanany, and Z. Zhong, “The Hasse diagram of the moduli space of instantons,” JHEP 08 (2022) 283, 2202.01218.
- C. Lawrie and L. Mansi, “The Higgs Branch of Heterotic LSTs: Hasse Diagrams and Generalized Symmetries,” 2312.05306.
- B. Fu, D. Juteau, P. Levy, and E. Sommers, “Generic singularities of nilpotent orbit closures,” Adv. Math. 305 (2017) 1–77.
- S. Giacomelli, M. Moleti, and R. Savelli, “Probing 7-branes on orbifolds,” JHEP 08 (2022) 163, 2205.08578.
- A. Malkin, V. Ostrik, and M. Vybornov, “The minimal degeneration singularities in the affine Grassmannians,” 0305095.
- C. Beem, C. Meneghelli, W. Peelaers, and L. Rastelli, “VOAs and rank-two instanton SCFTs,” Commun. Math. Phys. 377 (2020), no. 3, 2553–2578, 1907.08629.
- S. Giacomelli, C. Meneghelli, and W. Peelaers, “New 𝒩𝒩\mathcal{N}caligraphic_N = 2 superconformal field theories from 𝒮𝒮\mathcal{S}caligraphic_S-folds,” JHEP 01 (2021) 022, 2007.00647.
- M. Atiyah, N. Hitchin, V. Drinfeld, and Y. Manin, “Construction of instantons,” Physics Letters A 65 (1978), no. 3, 185–187.
- K. A. Intriligator and N. Seiberg, “Mirror symmetry in three-dimensional gauge theories,” Phys. Lett. B 387 (1996) 513–519, hep-th/9607207.
- J. de Boer, K. Hori, H. Ooguri, and Y. Oz, “Mirror symmetry in three-dimensional gauge theories, quivers and D-branes,” Nucl. Phys. B 493 (1997) 101–147, hep-th/9611063.
- T. Braden, N. Proudfoot, and B. Webster, “Quantizations of conical symplectic resolutions I: local and global structure,” 2022.
- T. Braden, A. Licata, N. Proudfoot, and B. Webster, “Quantizations of conical symplectic resolutions II: category 𝒪𝒪\mathcal{O}caligraphic_O and symplectic duality,” Asterisque 384 (2016) 75–179, 1407.0964.
- O. J. Ganor and A. Hanany, “Small E(8) instantons and tensionless noncritical strings,” Nucl. Phys. B 474 (1996) 122–140, hep-th/9602120.
- M. Martone, “Testing our understanding of SCFTs: a catalogue of rank-2 𝒩𝒩\mathcal{N}caligraphic_N = 2 theories in four dimensions,” JHEP 07 (2022) 123, 2102.02443.
- A. Hanany and N. Mekareeya, “The small E88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT instanton and the Kraft Procesi transition,” JHEP 07 (2018) 098, 1801.01129.
- S. Cabrera, A. Hanany, and M. Sperling, “Magnetic quivers, Higgs branches, and 6d 𝒩𝒩\mathcal{N}caligraphic_N = (1, 0) theories — orthogonal and symplectic gauge groups,” JHEP 02 (2020) 184, 1912.02773.
- F. Benini, Y. Tachikawa, and D. Xie, “Mirrors of 3d Sicilian theories,” JHEP 09 (2010) 063, 1007.0992.
- H. Nakajima. Private communication.
- D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions in 𝒩=4𝒩4{\mathcal{N}}\!=4caligraphic_N = 4 Super Yang-Mills Theory,” Adv. Theor. Math. Phys. 13 (2009), no. 3, 721–896, 0807.3720.
- J. J. Heckman and T. Rudelius, “Top Down Approach to 6D SCFTs,” J. Phys. A 52 (2019), no. 9, 093001, 1805.06467.
- D. D. Frey and T. Rudelius, “6D SCFTs and the classification of homomorphisms ΓADE→E8→subscriptΓ𝐴𝐷𝐸subscript𝐸8\Gamma_{ADE}\to E_{8}roman_Γ start_POSTSUBSCRIPT italic_A italic_D italic_E end_POSTSUBSCRIPT → italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT,” Adv. Theor. Math. Phys. 24 (2020), no. 3, 709–756, 1811.04921.
- P. C. Argyres, J. J. Heckman, K. Intriligator, and M. Martone, “Snowmass White Paper on SCFTs,” 2202.07683.
- Cambridge University Press, 1990.
- Y. Tachikawa, “On S-duality of 5d super Yang-Mills on S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT,” JHEP 11 (2011) 123, 1110.0531.
- P. J. Haine, “The Segal–Sugawara construction.” https://math.mit.edu/~phaine/files/Segal-Sugawara.pdf, 2020.
- S. Cabrera, A. Hanany, and M. Sperling, “Magnetic quivers, Higgs branches, and 6d N𝑁Nitalic_N=(1,0) theories,” JHEP 06 (2019) 071, 1904.12293. [Erratum: JHEP 07, 137 (2019)].
- A. Braverman, M. Finkelberg, and H. Nakajima, “Ring objects in the equivariant derived Satake category arising from Coulomb branches (with an appendix by Gus Lonergan),” 1706.02112.
- A. Braverman, M. Finkelberg, and H. Nakajima, “Line bundles over Coulomb branches,” Adv. Theor. Math. Phys. 25 (2021), no. 4, 957–993, 1805.11826.
- H. Nakajima, “A mathematical definition of Coulomb branches of supersymmetric gauge theories and geometric Satake correspondences for Kac-Moody Lie algebras,” 2201.08386.
- K. Intriligator, “6d, 𝒩=(1, 0)𝒩1 0\mathcal{N}=\left(1,\;0\right)caligraphic_N = ( 1 , 0 ) Coulomb branch anomaly matching,” JHEP 10 (2014) 162, 1408.6745.
- J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, “Geometry of 6D RG Flows,” JHEP 09 (2015) 052, 1505.00009.
- J. J. Heckman, D. R. Morrison, and C. Vafa, “On the Classification of 6D SCFTs and Generalized ADE Orbifolds,” JHEP 05 (2014) 028, 1312.5746. [Erratum: JHEP 06, 017 (2015)].
- S. Cremonesi, A. Hanany, N. Mekareeya, and A. Zaffaroni, “Coulomb branch Hilbert series and Three Dimensional Sicilian Theories,” JHEP 09 (2014) 185, 1403.2384.
- S. Cremonesi, G. Ferlito, A. Hanany, and N. Mekareeya, “Coulomb Branch and The Moduli Space of Instantons,” JHEP 12 (2014) 103, 1408.6835.
- K. Ohmori, H. Shimizu, and Y. Tachikawa, “Anomaly polynomial of E-string theories,” JHEP 08 (2014) 002, 1404.3887.
- A. Bourget, M. Sperling, and Z. Zhong, “Decay and Fission of Magnetic Quivers,” 2312.05304.
- I. Bah, A. Passias, and A. Tomasiello, “AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT compactifications with punctures in massive IIA supergravity,” JHEP 11 (2017) 050, 1704.07389.
- D. D. Frey, “Conjugacy of Alt5𝐴𝑙subscript𝑡5Alt_{5}italic_A italic_l italic_t start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT and SL(2,5)𝑆𝐿25SL(2,5)italic_S italic_L ( 2 , 5 ) subgroups of E8(ℂ)subscript𝐸8ℂE_{8}(\mathbb{C})italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( blackboard_C ),” Mem. Amer. Math. Soc. 133 (1998), no. 634,.
- D. D. Frey, “Conjugacy of alt5𝑎𝑙subscript𝑡5alt_{5}italic_a italic_l italic_t start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT and sl(2,5)𝑠𝑙25sl(2,5)italic_s italic_l ( 2 , 5 ) subgroups of e6(ℂ)subscript𝑒6ℂe_{6}(\mathbb{C})italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ( blackboard_C ), f4(𝕔)subscript𝑓4𝕔f_{4}({\mathbb{c}})italic_f start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( blackboard_c ), and a subgroup of e8(𝕔)subscript𝑒8𝕔e_{8}({\mathbb{c}})italic_e start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( blackboard_c ) of type a2e6subscript𝑎2subscript𝑒6a_{2}e_{6}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT,” Journal of Algebra 202 (1998) 414–454.
- D. D. Frey, “Conjugacy of Alt5𝐴𝑙subscript𝑡5Alt_{5}italic_A italic_l italic_t start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT and SL(2,5)𝑆𝐿25SL(2,5)italic_S italic_L ( 2 , 5 ) subgroups of E7(ℂ)subscript𝐸7ℂE_{7}(\mathbb{C})italic_E start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ( blackboard_C ),” J. Group Theory 4 (Jan., 2001).
- D. Testerman and R. Lawther, “Centres of Centralizers of Unipotent Elements in Simple Algebraic Groups,” Memoirs of the American Mathematical Society 210 (03, 2011).
- J. de Boer, K. Hori, H. Ooguri, Y. Oz, and Z. Yin, “Mirror symmetry in three-dimensional theories, SL(2,Z) and D-brane moduli spaces,” Nucl. Phys. B 493 (1997) 148–176, hep-th/9612131.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.