Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Signatures of quantum phases in a dissipative system (2312.17166v2)

Published 28 Dec 2023 in cond-mat.str-el, cond-mat.stat-mech, and quant-ph

Abstract: Lindbladian formalism, as tuned to dissipative and open systems, has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems. We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model - where the bath acts both as a source and a sink of fermionic particles with different coupling rates. As a function of these two couplings, we investigate the steady state, its entanglement content, and its approach from varying initial states. Interestingly, we find that the steady state phase diagram retains decipherable signatures of ground state critical physics. We also show that early-time fidelity is a useful marker to find a subclass of phase transitions in such situations. Moreover, we show that the survival of critical signatures at late-times, strongly depend on the thermal nature of the steady state. This connection hints at a correspondence between quantum observables and classical magnetism in the steady state of such systems. Our work uncovers interesting connections between dissipative quantum many-body systems, thermalization of a classical spin and many-body quantum critical phenomena.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124 (2015).
  2. T. Langen, R. Geiger, and J. Schmiedmayer, Ultracold atoms out of equilibrium, Annual Review of Condensed Matter Physics 6, 201 (2015).
  3. M. A. Cazalilla and M. Rigol, Focus on dynamics and thermalization in isolated quantum many-body systems, New Journal of Physics 12, 055006 (2010).
  4. R. Vasseur and J. E. Moore, Nonequilibrium quantum dynamics and transport: from integrability to many-body localization, Journal of Statistical Mechanics: Theory and Experiment 2016, 064010 (2016).
  5. I. Rotter and J. P. Bird, A review of progress in the physics of open quantum systems: theory and experiment, Reports on Progress in Physics 78, 114001 (2015).
  6. T. Oka and S. Kitamura, Floquet engineering of quantum materials, Annual Review of Condensed Matter Physics 10, 387 (2019).
  7. T. Mori, Floquet states in open quantum systems, Annual Review of Condensed Matter Physics 14, 35 (2023).
  8. Z. G. Yuto Ashida and M. Ueda, Non-hermitian physics, Advances in Physics 69, 249 (2020).
  9. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
  10. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N‐level systems, Journal of Mathematical Physics 17, 821 (2008).
  11. G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
  12. K. Mølmer, Y. Castin, and J. Dalibard, Monte carlo wave-function method in quantum optics, J. Opt. Soc. Am. B 10, 524 (1993).
  13. T. Prosen, Third quantization: a general method to solve master equations for quadratic open fermi systems, New Journal of Physics 10, 043026 (2008).
  14. T. c. v. Prosen and I. Pižorn, Quantum phase transition in a far-from-equilibrium steady state of an x⁢y𝑥𝑦xyitalic_x italic_y spin chain, Phys. Rev. Lett. 101, 105701 (2008).
  15. T. Prosen, Spectral theorem for the lindblad equation for quadratic open fermionic systems, Journal of Statistical Mechanics: Theory and Experiment 2010, P07020 (2010).
  16. A. D’Abbruzzo and D. Rossini, Topological signatures in a weakly dissipative kitaev chain of finite length, Phys. Rev. B 104, 115139 (2021).
  17. J. C. Budich and S. Diehl, Topology of density matrices, Phys. Rev. B 91, 165140 (2015).
  18. S. Bandyopadhyay, S. Bhattacharjee, and D. Sen, Driven quantum many-body systems and out-of-equilibrium topology, Journal of Physics: Condensed Matter 33, 393001 (2021).
  19. S. Bandyopadhyay and A. Dutta, Dissipative preparation of many-body floquet chern insulators, Phys. Rev. B 102, 184302 (2020a).
  20. S. Lieu, M. McGinley, and N. R. Cooper, Tenfold way for quadratic lindbladians, Phys. Rev. Lett. 124, 040401 (2020a).
  21. F. Nathan and M. S. Rudner, Universal lindblad equation for open quantum systems, Phys. Rev. B 102, 115109 (2020).
  22. S. Bandyopadhyay and A. Dutta, Dissipative preparation of many-body floquet chern insulators, Phys. Rev. B 102, 184302 (2020b).
  23. F. Carollo and V. Alba, Dissipative quasiparticle picture for quadratic markovian open quantum systems, Phys. Rev. B 105, 144305 (2022).
  24. S. Dutta and N. R. Cooper, Out-of-equilibrium steady states of a locally driven lossy qubit array, Phys. Rev. Res. 3, L012016 (2021).
  25. V. Alba and F. Carollo, Spreading of correlations in markovian open quantum systems, Phys. Rev. B 103, L020302 (2021).
  26. E. Starchl and L. M. Sieberer, Relaxation to a parity-time symmetric generalized gibbs ensemble after a quantum quench in a driven-dissipative kitaev chain, Phys. Rev. Lett. 129, 220602 (2022).
  27. M. van Caspel, S. E. T. Arze, and I. P. Castillo, Dynamical signatures of topological order in the driven-dissipative Kitaev chain, SciPost Phys. 6, 026 (2019).
  28. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
  29. S. Nascimbène, Realizing one-dimensional topological superfluids with ultracold atomic gases, Journal of Physics B: Atomic, Molecular and Optical Physics 46, 134005 (2013).
  30. D. Rainis and D. Loss, Majorana qubit decoherence by quasiparticle poisoning, Phys. Rev. B 85, 174533 (2012).
  31. A. Tsintzis, R. S. Souto, and M. Leijnse, Creating and detecting poor man’s majorana bound states in interacting quantum dots, Phys. Rev. B 106, L201404 (2022).
  32. D. M. Pino, R. S. Souto, and R. Aguado, Minimal kitaev-transmon qubit based on double quantum dots (2023), arXiv:2309.12313 [cond-mat.mes-hall] .
  33. W. Samuelson, V. Svensson, and M. Leijnse, A minimal quantum dot-based kitaev chain with only local superconducting proximity effect (2023), arXiv:2310.03536 [cond-mat.mes-hall] .
  34. A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi 44, 131 (2001).
  35. A. Kitaev and C. Laumann, Topological phases and quantum computation (2009), arXiv:0904.2771 [cond-mat.mes-hall] .
  36. S. Lieu, M. McGinley, and N. R. Cooper, Tenfold way for quadratic lindbladians, Phys. Rev. Lett. 124, 040401 (2020b).
  37. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics 16, 407 (1961).
  38. I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
  39. S. Bandyopadhyay, A. Polkovnikov, and A. Dutta, Late-time critical behavior of local stringlike observables under quantum quenches, Phys. Rev. B 107, 064105 (2023).
  40. R. Jozsa, Fidelity for mixed quantum states, Journal of Modern Optics 41, 2315 (1994).
  41. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
  42. S. Bandyopadhyay, S. Bhattacharjee, and A. Dutta, Dynamical generation of majorana edge correlations in a ramped kitaev chain coupled to nonthermal dissipative channels, Phys. Rev. B 101, 104307 (2020).
  43. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin hall effect and topological phase transition in hgte quantum wells, Science 314, 1757 (2006).
  44. A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube