Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Extended Skyrme effective interactions for transport model and neutron stars (2312.17105v2)

Published 28 Dec 2023 in nucl-th, astro-ph.HE, hep-ph, and nucl-ex

Abstract: It is important to develop a unified theoretical framework to describe the nuclear experiments and astrophysical observations based on the same effective nuclear interactions. Based on the so-called Skyrme pseudopotential up to next-to-next-to-next-to-leading order, we construct a series of extended Skyrme interactions by modifying the density-dependent term and fitting the empirical nucleon optical potential up to above $1$ GeV, the empirical properties of isospin symmetric nuclear matter, the microscopic calculations of pure neutron matter and the properties of neutron stars from astrophysical observations. The modification of the density-dependent term in the extended Skyrme interactions follows the idea of Fermi momentum expansion and this leads to a highly flexible density behavior of the symmetry energy. In particular, the values of the density slope parameter $L$ of the symmetry energy for the new extended Skyrme interactions range from $L = -5$ MeV to $L = 125$ MeV by construction, to cover the large uncertainty of the density dependence of the symmetry energy. Furthermore, in order to consider the effects of isoscalar and isovector nucleon effective masses, we adjust the momentum dependency of the single-nucleon optical potential and the symmetry potential of these new extended Skyrme interactions and construct a parameter set family, by which we systematically study the impacts of the symmetry energy and the nucleon effective masses on the properties of nuclear matter and neutron stars. The new extended Skyrme interactions constructed in the present work will be useful to determine the equation of state of isospin asymmetric nuclear matter, especially the symmetry energy, as well as the nucleon effective masses and their isospin splitting, in transport model simulations for heavy-ion collisions, nuclear structure calculations and neutron star studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (87)
  1. B.-A. Li, C. M. Ko, and W. Bauer, Isospin physics in heavy ion collisions at intermediate-energies, Int. J. Mod. Phys. E 7, 147 (1998), arXiv:nucl-th/9707014 .
  2. P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298, 1592 (2002), arXiv:nucl-th/0208016 .
  3. J. M. Lattimer and M. Prakash, The physics of neutron stars, Science 304, 536 (2004), arXiv:astro-ph/0405262 .
  4. J. M. Lattimer and M. Prakash, Neutron Star Observations: Prognosis for Equation of State Constraints, Phys. Rept. 442, 109 (2007), arXiv:astro-ph/0612440 .
  5. B.-A. Li, L.-W. Chen, and C. M. Ko, Recent Progress and New Challenges in Isospin Physics with Heavy-Ion Reactions, Phys. Rept. 464, 113 (2008), arXiv:0804.3580 [nucl-th] .
  6. W. Trautmann and H. H. Wolter, Elliptic flow and the symmetry energy at supra-saturation density, Int. J. Mod. Phys. E 21, 1230003 (2012), arXiv:1205.2585 [nucl-ex] .
  7. R. Wang and L.-W. Chen, Positioning the neutron drip line and the r-process paths in the nuclear landscape, Phys. Rev. C 92, 031303 (2015), arXiv:1410.2498 [nucl-th] .
  8. M. Baldo and G. F. Burgio, The nuclear symmetry energy, Prog. Part. Nucl. Phys. 91, 203 (2016), arXiv:1606.08838 [nucl-th] .
  9. J. M. Lattimer and M. Prakash, Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers, Phys. Rept. 333, 121 (2000), arXiv:astro-ph/0002203 .
  10. B.-A. Li, Nuclear Symmetry Energy Extracted from Laboratory Experiments, Nucl. Phys. News 27, 7 (2017), arXiv:1701.03564 [nucl-th] .
  11. D. H. Youngblood, H. L. Clark, and Y. W. Lui, Incompressibility of Nuclear Matter from the Giant Monopole Resonance, Phys. Rev. Lett. 82, 691 (1999).
  12. T. Li et al., Isotopic dependence of the giant monopole resonance in the even-A Sn-112 - Sn-124 isotopes and the asymmetry term in nuclear incompressibility, Phys. Rev. Lett. 99, 162503 (2007), arXiv:0709.0567 [nucl-ex] .
  13. U. Garg and G. Colò, The compression-mode giant resonances and nuclear incompressibility, Prog. Part. Nucl. Phys. 101, 55 (2018), arXiv:1801.03672 [nucl-ex] .
  14. J. Aichelin and C. M. Ko, Subthreshold Kaon Production as a Probe of the Nuclear Equation of State, Phys. Rev. Lett. 55, 2661 (1985).
  15. C. Hartnack, H. Oeschler, and J. Aichelin, Hadronic matter is soft, Phys. Rev. Lett. 96, 012302 (2006), arXiv:nucl-th/0506087 .
  16. C. Wellenhofer, J. W. Holt, and N. Kaiser, Thermodynamics of isospin-asymmetric nuclear matter from chiral effective field theory, Phys. Rev. C 92, 015801 (2015), arXiv:1504.00177 [nucl-th] .
  17. S. Gandolfi, J. Carlson, and S. Reddy, The maximum mass and radius of neutron stars and the nuclear symmetry energy, Phys. Rev. C 85, 032801 (2012), arXiv:1101.1921 [nucl-th] .
  18. A. Roggero, A. Mukherjee, and F. Pederiva, Quantum Monte Carlo calculations of neutron matter with non-local chiral interactions, Phys. Rev. Lett. 112, 221103 (2014), arXiv:1402.1576 [nucl-th] .
  19. A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, The Equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58, 1804 (1998), arXiv:nucl-th/9804027 .
  20. M. Baldo and K. Fukukawa, Nuclear Matter from Effective Quark-Quark Interaction, Phys. Rev. Lett. 113, 242501 (2014), arXiv:1409.7206 [nucl-th] .
  21. A. Carbone, A. Rios, and A. Polls, Correlated density-dependent chiral forces for infinite matter calculations within the Green’s function approach, Phys. Rev. C 90, 054322 (2014), arXiv:1408.0717 [nucl-th] .
  22. Z. Zhang and L.-W. Chen, Bayesian inference of the symmetry energy and the neutron skin in Ca48 and Pb208 from CREX and PREX-2, Phys. Rev. C 108, 024317 (2023), arXiv:2207.03328 [nucl-th] .
  23. Z. Zhang and L.-W. Chen, Constraining the symmetry energy at subsaturation densities using isotope binding energy difference and neutron skin thickness, Phys. Lett. B 726, 234 (2013), arXiv:1302.5327 [nucl-th] .
  24. B. A. Brown, Constraints on the Skyrme Equations of State from Properties of Doubly Magic Nuclei, Phys. Rev. Lett. 111, 232502 (2013), arXiv:1308.3664 [nucl-th] .
  25. Z. Zhang and L.-W. Chen, Constraining the density slope of nuclear symmetry energy at subsaturation densities using electric dipole polarizability in 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb, Phys. Rev. C 90, 064317 (2014), arXiv:1407.8054 [nucl-th] .
  26. Z. Zhang and L.-W. Chen, Electric dipole polarizability in 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb as a probe of the symmetry energy and neutron matter around ρ0/3subscript𝜌03\rho_{0}/3italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / 3, Phys. Rev. C 92, 031301 (2015), arXiv:1504.01077 [nucl-th] .
  27. X. Roca-Maza and N. Paar, Nuclear equation of state from ground and collective excited state properties of nuclei, Prog. Part. Nucl. Phys. 101, 96 (2018), arXiv:1804.06256 [nucl-th] .
  28. D. Adhikari et al. (PREX), Accurate Determination of the Neutron Skin Thickness of 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb through Parity-Violation in Electron Scattering, Phys. Rev. Lett. 126, 172502 (2021), arXiv:2102.10767 [nucl-ex] .
  29. D. Adhikari et al. (CREX), Precision Determination of the Neutral Weak Form Factor of Ca48, Phys. Rev. Lett. 129, 042501 (2022), arXiv:2205.11593 [nucl-ex] .
  30. P.-G. Reinhard, X. Roca-Maza, and W. Nazarewicz, Combined Theoretical Analysis of the Parity-Violating Asymmetry for Ca48 and Pb208, Phys. Rev. Lett. 129, 232501 (2022), arXiv:2206.03134 [nucl-th] .
  31. E. Yüksel and N. Paar, Implications of parity-violating electron scattering experiments on 48Ca (CREX) and 208Pb (PREX-II) for nuclear energy density functionals, Phys. Lett. B 836, 137622 (2023), arXiv:2206.06527 [nucl-th] .
  32. G. F. Bertsch and S. Das Gupta, A Guide to microscopic models for intermediate-energy heavy ion collisions, Phys. Rept. 160, 189 (1988).
  33. J. Aichelin, ’Quantum’ molecular dynamics: A Dynamical microscopic n body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rept. 202, 233 (1991).
  34. J. Xu et al. (TMEP), Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions, Phys. Rev. C 93, 044609 (2016), arXiv:1603.08149 [nucl-th] .
  35. Y.-X. Zhang et al. (TMEP), Comparison of heavy-ion transport simulations: Collision integral in a box, Phys. Rev. C 97, 034625 (2018), arXiv:1711.05950 [nucl-th] .
  36. A. Ono et al. (TMEP), Comparison of heavy-ion transport simulations: Collision integral with pions and ΔΔ\Deltaroman_Δ resonances in a box, Phys. Rev. C 100, 044617 (2019), arXiv:1904.02888 [nucl-th] .
  37. M. Colonna et al. (TMEP), Comparison of heavy-ion transport simulations: Mean-field dynamics in a box, Phys. Rev. C 104, 024603 (2021), arXiv:2106.12287 [nucl-th] .
  38. H. Wolter et al. (TMEP), Transport model comparison studies of intermediate-energy heavy-ion collisions, Prog. Part. Nucl. Phys. 125, 103962 (2022), arXiv:2202.06672 [nucl-th] .
  39. J. Xu et al. (TMEP), Comparing pion production in transport simulations of heavy-ion collisions at 270⁢A270𝐴270A270 italic_A MeV under controlled conditions,   (2023), arXiv:2308.05347 [nucl-th] .
  40. M. Urban, Pygmy resonance and torus mode within Vlasov dynamics, Phys. Rev. C 85, 034322 (2012), arXiv:1103.0861 [nucl-th] .
  41. R. Wang, L.-W. Chen, and Z. Zhang, Nuclear collective dynamics in the lattice Hamiltonian Vlasov method, Phys. Rev. C 99, 044609 (2019), arXiv:1902.01256 [nucl-th] .
  42. F. Raimondi, B. G. Carlsson, and J. Dobaczewski, Effective pseudopotential for energy density functionals with higher order derivatives, Phys. Rev. C 83, 054311 (2011), arXiv:1103.0682 [nucl-th] .
  43. R. Wang, L.-W. Chen, and Y. Zhou, Extended Skyrme interactions for transport model simulations of heavy-ion collisions, Phys. Rev. C 98, 054618 (2018), arXiv:1806.03278 [nucl-th] .
  44. W. Reisdorf et al. (FOPI), Systematics of central heavy ion collisions in the 1A GeV regime, Nucl. Phys. A 848, 366 (2010), arXiv:1005.3418 [nucl-ex] .
  45. B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc] .
  46. H. T. Cromartie et al. (NANOGrav), Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, Nature Astron. 4, 72 (2019), arXiv:1904.06759 [astro-ph.HE] .
  47. E. Fonseca et al., Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620, Astrophys. J. Lett. 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE] .
  48. M. C. Miller et al., PSR J0030+0451 Mass and Radius from N⁢I⁢C⁢E⁢R𝑁𝐼𝐶𝐸𝑅NICERitalic_N italic_I italic_C italic_E italic_R Data and Implications for the Properties of Neutron Star Matter, Astrophys. J. Lett. 887, L24 (2019), arXiv:1912.05705 [astro-ph.HE] .
  49. T. E. Riley et al., A N⁢I⁢C⁢E⁢R𝑁𝐼𝐶𝐸𝑅NICERitalic_N italic_I italic_C italic_E italic_R View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation, Astrophys. J. Lett. 887, L21 (2019), arXiv:1912.05702 [astro-ph.HE] .
  50. M. C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE] .
  51. T. E. Riley et al., A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
  52. Y. Zhou, L.-W. Chen, and Z. Zhang, Equation of state of dense matter in the multimessenger era, Phys. Rev. D 99, 121301 (2019), arXiv:1901.11364 [nucl-th] .
  53. Y. Zhou and L.-W. Chen, Ruling out the supersoft high-density symmetry energy from the discovery of PSR J0740+6620 with mass 2.14−0.09+0.10⁢M⊙subscriptsuperscript2.140.100.09subscript𝑀direct-product2.14^{+0.10}_{-0.09}M_{\odot}2.14 start_POSTSUPERSCRIPT + 0.10 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.09 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, Astrophys. J. 886, 52 (2019), arXiv:1907.12284 [nucl-th] .
  54. Z. Zhang and L.-W. Chen, Extended Skyrme interactions for nuclear matter, finite nuclei and neutron stars, Phys. Rev. C 94, 064326 (2016a), arXiv:1510.06459 [nucl-th] .
  55. T. Skyrme, The effective nuclear potential, Nucl. Phys. 9, 615 (1959).
  56. D. Vautherin and D. M. Brink, Hartree-Fock calculations with Skyrme’s interaction. 1. Spherical nuclei, Phys. Rev. C 5, 626 (1972).
  57. J. Decharge and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interactions on spherical nuclei, Phys. Rev. C 21, 1568 (1980).
  58. N. Chamel, S. Goriely, and J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI. Stabilizing neutron stars against a ferromagnetic collapse, Phys. Rev. C 80, 065804 (2009), arXiv:0911.3346 [nucl-th] .
  59. A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems, Dover Books on Physics (Dover Publications, 2012).
  60. D. Davesne, A. Pastore, and J. Navarro, Fitting N33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTLO pseudo-potentials through central plus tensor Landau parameters, J. Phys. G 41, 065104 (2014), arXiv:1401.7914 [nucl-th] .
  61. V. M. Kolomietz and S. Shlomo, Bulk and isospin instabilities in hot nuclear matter, Phys. Rev. C 95, 054613 (2017).
  62. J. Pu, Z. Zhang, and L.-W. Chen, Nuclear matter fourth-order symmetry energy in nonrelativistic mean-field models, Phys. Rev. C 96, 054311 (2017), arXiv:1708.02132 [nucl-th] .
  63. F. Zhang and L. Chen, Proton fraction in neutron stars, Chin. Phys. Lett. 18, 142 (2001), arXiv:nucl-th/0011017 .
  64. A. W. Steiner, The High-density symmetry energy and direct Urca, Phys. Rev. C 74, 045808 (2006), arXiv:nucl-th/0607040 .
  65. A. Lane, Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions, Nucl. Phys. 35, 676 (1962).
  66. M. Jaminon and C. Mahaux, Effective Masses in Relativistic Approaches to the Nucleon Nucleus Mean Field, Phys. Rev. C 40, 354 (1989).
  67. B.-A. Li and L.-W. Chen, Neutron–proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions, Mod. Phys. Lett. A 30, 1530010 (2015), arXiv:1503.00370 [nucl-th] .
  68. Z. Zhang and L.-W. Chen, Isospin splitting of the nucleon effective mass from giant resonances in 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb, Phys. Rev. C 93, 034335 (2016b), arXiv:1507.04675 [nucl-th] .
  69. L.-W. Chen, C. M. Ko, and B.-A. Li, High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter, Phys. Rev. C 72, 064606 (2005), arXiv:nucl-th/0508045 .
  70. N. M. Hugenholtz and L. van Hove, A theorem on the single particle energy in a Fermi gas with interaction, Physica 24, 363 (1958).
  71. L. Satpathy, V. Maheswari, and R. Nayak, Finite nuclei to nuclear matter: a leptodermous approach, Physics Reports 319, 85 (1999).
  72. K. A. Brueckner and J. Dabrowski, Symmetry Energy and the Isotopic Spin Dependence of the Single-Particle Potential in Nuclear Matter, Phys. Rev. 134, B722 (1964).
  73. J. Dabrowski and P. Haensel, Spin and isospin dependence of the single-particle potential in nuclear matter, Phys. Lett. B 42, 163 (1972).
  74. J. Dabrowski and P. Haensel, Spin and Spin-Isospin Symmetry Energy of Nuclear Matter, Phys. Rev. C 7, 916 (1973).
  75. W.-J. Xie and B.-A. Li, Bayesian Inference of the Symmetry Energy of Superdense Neutron-rich Matter from Future Radius Measurements of Massive Neutron Stars, Astrophys. J. 899, 4 (2020), arXiv:2005.07216 [astro-ph.HE] .
  76. D. P. Murdock and C. J. Horowitz, Microscopic Relativistic Description of Proton - Nucleus Scattering, Phys. Rev. C 35, 1442 (1987).
  77. J. A. McNeil, L. Ray, and S. J. Wallace, Impulse Approximation N⁢N𝑁𝑁NNitalic_N italic_N Amplitudes for Proton - Nucleus Interactions, Phys. Rev. C 27, 2123 (1983).
  78. J. Carriere, C. J. Horowitz, and J. Piekarewicz, Low mass neutron stars and the equation of state of dense matter, Astrophys. J. 593, 463 (2003), arXiv:nucl-th/0211015 .
  79. G. Baym, C. Pethick, and P. Sutherland, The Ground State of Matter at High Densities: Equation of State and Stellar Models, Astrophys. J.  170, 299 (1971).
  80. K. Oyamatsu and K. Iida, The Symmetry energy at subnuclear densities and nuclei in neutron star crusts, Phys. Rev. C 75, 015801 (2007), arXiv:nucl-th/0609040 .
  81. T. Gorda, O. Komoltsev, and A. Kurkela, Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State, Astrophys. J. 950, 107 (2023), arXiv:2204.11877 [nucl-th] .
  82. Z. Cao and L.-W. Chen, Neutron Star vs Quark Star in the Multimessenger Era,   (2023), arXiv:2308.16783 [astro-ph.HE] .
  83. L. McLerran and S. Reddy, Quarkyonic Matter and Neutron Stars, Phys. Rev. Lett. 122, 122701 (2019), arXiv:1811.12503 [nucl-th] .
  84. N.-B. Zhang and B.-A. Li, Impact of symmetry energy on sound speed and spinodal decomposition in dense neutron-rich matter, Eur. Phys. J. A 59, 86 (2023), arXiv:2208.00321 [nucl-th] .
  85. K. Oyamatsu, H. Sotani, and K. Iida, Neutron Star Structure Explored With A Family Of Unified Equations Of State Of Neutron Star Matter, PoS INPC2016, 136 (2017).
  86. B. Ter Haar and R. Malfliet, Nucleons, Mesons and Deltas in Nuclear Matter. A Relativistic Dirac-Bruckner Approach, Phys. Rept. 149, 207 (1987).
  87. B.-A. Li, Constraining the neutron-proton effective mass splitting in neutron-rich matter, Phys. Rev. C 69, 064602 (2004), arXiv:nucl-th/0404040 .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.