Representation functions in the set of natural numbers
Abstract: Let $\mathbb{N}$ be the set of all nonnegative integers. For $S\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_S(n)$ denote the number of solutions of the equation $n=s+s'$, $s, s'\in S$, $s<s'$. In this paper, we determine the structure of all sets $A$ and $B$ such that $A\cup B=\mathbb{N}\setminus{r+mk:k\in\mathbb{N}}$, $A\cap B=\emptyset$ and $R_{A}(n)=R_{B}(n)$ for every positive integer $n$, where $m$ and $r$ are two integers with $m\ge 2$ and $r\ge 0$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.