Atomic mass determination of uranium-238 (2312.17041v1)
Abstract: The atomic mass of uranium-238 has been determined to be $238.050\,787\,618(15)\,\text{u}$, improving the literature uncertainty by two orders of magnitude. It is obtained from a measurement of the mass ratio of ${238}$U${47+}$ and ${132}$Xe${26+}$ ions with an uncertainty of $3.5\times 10{-12}$. The measurement was carried out with the Penning-trap mass spectrometer \textsc{Pentatrap} and was accompanied by a calculation of the binding energies $E_{\text{U}}$ and $E_{\text{Xe}}$ of the 47 and 26 missing electrons of the two highly charged ions, respectively. These binding energies were determined using an \textit{ab initio} multiconfiguration Dirac-Hartree-Fock (MCDHF) method to be $E_{\text{U}} = 39\,927(10)\,\text{eV}$ and $E_{\text{Xe}} = 8\,971.2(21)\,\text{eV}$. The new mass value will serve as a reference for high-precision mass measurements in the heavy mass region of the nuclear chart up to transuranium nuclides.
- A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58, 292 (2007).
- J. Hamilton, S. Hofmann, and Y. Oganessian, Search for Superheavy Nuclei, Annu. Rev. Nucl. Part. Sci. 63, 383 (2013).
- G. Audi, The Evaluation of Atomic Masses, in Atomic Physics at Accelerators: Mass Spectrometry, edited by D. Lunney, G. Audi, and H.-J. Kluge (Springer Netherlands, Dordrecht, 2001) pp. 7–34.
- A. Poves and F. Nowacki, The nuclear shell model, in An Advanced Course in Modern Nuclear Physics, Lecture Notes in Physics, edited by J. M. Arias and M. Lozano (Springer, Berlin, Heidelberg, 2001) pp. 70–101.
- D. J. Fink and E. G. Myers, Deuteron-to-Proton Mass Ratio from the Cyclotron Frequency Ratio of H+2superscriptsubscriptabsent2{}_{2}^{+}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT to D+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT with H+2superscriptsubscriptabsent2{}_{2}^{+}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT in a Resolved Vibrational State, Phys. Rev. Lett. 124, 013001 (2020).
- C. Guénaut, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, F. Herfurth, A. Kellerbauer, H. J. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, and C. Yazidjian, Extending the mass “backbone” to short-lived nuclides with ISOLTRAP, Eur. Phys. J. A 25, 35 (2005).
- T. Beier, The gjsubscript𝑔𝑗g_{j}italic_g start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions, Phys. Rep. 339, 79 (2000).
- L. S. Brown and G. Gabrielse, Precision spectroscopy of a charged particle in an imperfect Penning trap, Phys. Rev. A 25, 2423 (1982).
- N. E. Bradbury and R. A. Nielsen, Absolute Values of the Electron Mobility in Hydrogen, Phys. Rev. 49, 388 (1936).
- I. P. Grant, Relativistic calculation of atomic structures, Adv. Phys. 19, 747 (1970).
- J. P. Desclaux, D. F. Mayers, and F. O’Brien, Relativistic atomic wave functions, J. Phys. B 4, 631 (1971).
- D. H. Bross, P. Parmar, and K. A. Peterson, Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom, J. Chem. Phys. 143, 184308 (2015).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.