Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Strong Homotopy Algebras for Chiral Higher Spin Gravity via Stokes Theorem (2312.16573v2)

Published 27 Dec 2023 in hep-th and math.QA

Abstract: Chiral higher spin gravity is defined in terms of a strong homotopy algebra of pre-Calabi-Yau type (noncommutative Poisson structure). All structure maps are given by the integrals over the configuration space of concave polygons and the first two maps are related to the (Shoikhet-Tsygan-)Kontsevich Formality. As with the known formality theorems, we prove the $A_\infty$-relations via Stokes' theorem by constructing a closed form and a configuration space whose boundary components lead to the $A_\infty$-relations. This gives a new way to formulate higher spin gravities and hints at a construct encompassing the known formality theorems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. L. Cangemi, M. Chiodaroli, H. Johansson, A. Ochirov, P. Pichini, and E. Skvortsov, “From higher-spin gauge interactions to Compton amplitudes for root-Kerr,” arXiv:2311.14668 [hep-th].
  2. X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin symmetry,” arXiv:2205.01567 [hep-th].
  3. X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” JHEP 11 (2015) 149, arXiv:1508.04292 [hep-th].
  4. J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk point,” JHEP 01 (2017) 013, arXiv:1509.03612 [hep-th].
  5. C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121 no. 17, (2018) 171604, arXiv:1704.07859 [hep-th].
  6. D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4 no. 1, (2018) 2, arXiv:1710.00403 [hep-th].
  7. M. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D𝐷Ditalic_D = (2+1),” Class.Quant.Grav. 6 (1989) 443.
  8. E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms and Higher Spin Algebra,” Commun. Math. Phys. 128 (1990) 213.
  9. A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields,” JHEP 1011 (2010) 007, arXiv:1008.4744 [hep-th].
  10. M. Henneaux and S.-J. Rey, “Nonlinear W∞subscript𝑊W_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity,” JHEP 1012 (2010) 007, arXiv:1008.4579 [hep-th].
  11. C. N. Pope and P. K. Townsend, “Conformal Higher Spin in (2+1)-dimensions,” Phys. Lett. B225 (1989) 245–250.
  12. E. S. Fradkin and V. Ya. Linetsky, “A Superconformal Theory of Massless Higher Spin Fields in D𝐷Ditalic_D = (2+1),” Mod. Phys. Lett. A4 (1989) 731. [Annals Phys.198,293(1990)].
  13. M. Grigoriev, I. Lovrekovic, and E. Skvortsov, “New Conformal Higher Spin Gravities in 3⁢d3𝑑3d3 italic_d,” JHEP 01 (2020) 059, arXiv:1909.13305 [hep-th].
  14. M. Grigoriev, K. Mkrtchyan, and E. Skvortsov, “Matter-free higher spin gravities in 3D: Partially-massless fields and general structure,” Phys. Rev. D 102 no. 6, (2020) 066003, arXiv:2005.05931 [hep-th].
  15. A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B664 (2003) 59–130, arXiv:hep-th/0207212 [hep-th].
  16. A. A. Tseytlin, “On limits of superstring in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Theor. Math. Phys. 133 (2002) 1376–1389, arXiv:hep-th/0201112 [hep-th]. [Teor. Mat. Fiz.133,69(2002)].
  17. X. Bekaert, E. Joung, and J. Mourad, “Effective action in a higher-spin background,” JHEP 02 (2011) 048, arXiv:1012.2103 [hep-th].
  18. T. Basile, M. Grigoriev, and E. Skvortsov, “Covariant action for conformal higher spin gravity,” J. Phys. A 56 no. 38, (2023) 385402, arXiv:2212.10336 [hep-th].
  19. R. R. Metsaev, “Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass shell,” Mod. Phys. Lett. A6 (1991) 359–367.
  20. R. R. Metsaev, “S𝑆Sitalic_S matrix approach to massless higher spins theory. 2: The Case of internal symmetry,” Mod. Phys. Lett. A6 (1991) 2411–2421.
  21. D. Ponomarev and E. D. Skvortsov, “Light-Front Higher-Spin Theories in Flat Space,” J. Phys. A50 no. 9, (2017) 095401, arXiv:1609.04655 [hep-th].
  22. E. D. Skvortsov, T. Tran, and M. Tsulaia, “Quantum Chiral Higher Spin Gravity,” Phys. Rev. Lett. 121 no. 3, (2018) 031601, arXiv:1805.00048 [hep-th].
  23. E. Skvortsov, T. Tran, and M. Tsulaia, “More on Quantum Chiral Higher Spin Gravity,” Phys. Rev. D101 no. 10, (2020) 106001, arXiv:2002.08487 [hep-th].
  24. D. Ponomarev, “Chiral Higher Spin Theories and Self-Duality,” JHEP 12 (2017) 141, arXiv:1710.00270 [hep-th].
  25. K. Krasnov, E. Skvortsov, and T. Tran, “Actions for Self-dual Higher Spin Gravities,” arXiv:2105.12782 [hep-th].
  26. T. Tran, “Twistor constructions for higher-spin extensions of (self-dual) Yang-Mills,” JHEP 11 (2021) 117, arXiv:2107.04500 [hep-th].
  27. T. Tran, “Toward a twistor action for chiral higher-spin gravity,” Phys. Rev. D 107 no. 4, (2023) 046015, arXiv:2209.00925 [hep-th].
  28. T. Adamo and T. Tran, “Higher-spin Yang–Mills, amplitudes and self-duality,” Lett. Math. Phys. 113 no. 3, (2023) 50, arXiv:2210.07130 [hep-th].
  29. M. Sperling and H. C. Steinacker, “Covariant 4-dimensional fuzzy spheres, matrix models and higher spin,” J. Phys. A50 no. 37, (2017) 375202, arXiv:1704.02863 [hep-th].
  30. H. Steinacker and T. Tran, “A Twistorial Description of the IKKT-Matrix Model,” arXiv:2203.05436 [hep-th].
  31. H. C. Steinacker and T. Tran, “Soft limit of higher-spin interactions in the IKKT model,” arXiv:2311.14163 [hep-th].
  32. M. A. Vasiliev, “Closed equations for interacting gauge fields of all spins,” JETP Lett. 51 (1990) 503–507.
  33. M. A. Vasiliev, “Higher spin gauge theories: Star-product and AdS space,” hep-th/9910096.
  34. X. Bekaert and M. Grigoriev, “Higher order singletons, partially massless fields and their boundary values in the ambient approach,” Nucl. Phys. B876 (2013) 667–714, arXiv:1305.0162 [hep-th].
  35. R. Bonezzi, N. Boulanger, E. Sezgin, and P. Sundell, “Frobenius–Chern–Simons gauge theory,” J. Phys. A50 no. 5, (2017) 055401, arXiv:1607.00726 [hep-th].
  36. X. Bekaert, M. Grigoriev, and E. D. Skvortsov, “Higher Spin Extension of Fefferman-Graham Construction,” Universe 4 no. 2, (2018) 17, arXiv:1710.11463 [hep-th].
  37. M. Grigoriev and E. D. Skvortsov, “Type-B Formal Higher Spin Gravity,” JHEP 05 (2018) 138, arXiv:1804.03196 [hep-th].
  38. N. Boulanger, P. Kessel, E. D. Skvortsov, and M. Taronna, “Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal,” J. Phys. A49 no. 9, (2016) 095402, arXiv:1508.04139 [hep-th].
  39. R. de Mello Koch, A. Jevicki, K. Suzuki, and J. Yoon, “AdS Maps and Diagrams of Bi-local Holography,” JHEP 03 (2019) 133, arXiv:1810.02332 [hep-th].
  40. O. Aharony, S. M. Chester, and E. Y. Urbach, “A Derivation of AdS/CFT for Vector Models,” arXiv:2011.06328 [hep-th].
  41. A. Sharapov and E. Skvortsov, “Formal Higher Spin Gravities,” Nucl. Phys. B941 (2019) 838–860, arXiv:1901.01426 [hep-th].
  42. E. Skvortsov and R. Van Dongen, “Minimal models of field theories: Chiral Higher Spin Gravity,” arXiv:2204.10285 [hep-th].
  43. A. Sharapov, E. Skvortsov, A. Sukhanov, and R. Van Dongen, “Minimal model of Chiral Higher Spin Gravity,” arXiv:2205.07794 [hep-th].
  44. A. Sharapov and E. Skvortsov, “Chiral Higher Spin Gravity in (A)dS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT and secrets of Chern–Simons Matter Theories,” arXiv:2205.15293 [hep-th].
  45. A. Sharapov, E. Skvortsov, and R. Van Dongen, “Chiral higher spin gravity and convex geometry,” SciPost Phys. 14 no. 6, (2023) 162, arXiv:2209.01796 [hep-th].
  46. A. Sharapov, E. Skvortsov, A. Sukhanov, and R. Van Dongen, “More on Chiral Higher Spin Gravity and convex geometry,” Nucl. Phys. B 990 (2023) 116152, arXiv:2209.15441 [hep-th].
  47. A. A. Sharapov and E. D. Skvortsov, “Formal higher-spin theories and Kontsevich–Shoikhet–Tsygan formality,” Nucl. Phys. B921 (2017) 538–584, arXiv:1702.08218 [hep-th].
  48. A. Sharapov and E. Skvortsov, “Characteristic Cohomology and Observables in Higher Spin Gravity,” JHEP 12 (2020) 190, arXiv:2006.13986 [hep-th].
  49. M. Kontsevich, “Deformation quantization of Poisson manifolds. 1.,” Lett. Math. Phys. 66 (2003) 157–216, arXiv:q-alg/9709040 [q-alg].
  50. B. Tsygan, “Formality conjecture for chains,” arXiv:math/9904132.
  51. B. Shoikhet, “A proof of the Tsygan formality conjecture for chains,” Advances in Mathematics 179 no. 1, (2003) 7 – 37.
  52. M. Kontsevich, A. Takeda, and Y. Vlassopoulos, “Pre-Calabi-Yau algebras and topological quantum field theories,” arXiv preprint arXiv:2112.14667 (2021) .
  53. N. Iyudu, M. Kontsevich, and Y. Vlassopoulos, “Pre-Calabi-Yau algebras as noncommutative Poisson structures,” Journal of Algebra 567 (2021) 63–90.
  54. M. Kontsevich and Y. Soibelman, “Notes on A∞subscript𝐴A_{\infty}italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-Algebras, A∞subscript𝐴A_{\infty}italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-Categories and Non-Commutative Geometry,” Lect. Notes in Physics 757 (2009) 153–220, arXiv:math/0606241.
  55. H. Kajiura, “Noncommutative homotopy algebras associated with open strings,” Rev. Math. Phys. 19 (2007) 1–99, arXiv:math/0306332 [math-qa].
  56. T. Lada, “Commutators of A∞subscript𝐴A_{\infty}italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT structures,” Contemp. Math. 227 (1999) 227–233.
  57. R. R. Metsaev, “Cubic interactions for arbitrary spin 𝒩𝒩\mathcal{N}caligraphic_N -extended massless supermultiplets in 4d flat space,” JHEP 11 (2019) 084, arXiv:1909.05241 [hep-th].
  58. M. Tsulaia and D. Weissman, “Supersymmetric quantum chiral higher spin gravity,” JHEP 12 (2022) 002, arXiv:2209.13907 [hep-th].
  59. R. Penrose, “Zero rest mass fields including gravitation: Asymptotic behavior,” Proc. Roy. Soc. Lond. A284 (1965) 159.
  60. 1979.
  61. M. G. Eastwood, R. Penrose, and R. O. Wells, “Cohomology and Massless Fields,” Commun. Math. Phys. 78 (1981) 305–351.
  62. N. M. J. Woodhouse, “Real methods in twistor theory,” Class. Quant. Grav. 2 (1985) 257–291.
  63. M. A. Vasiliev, “Free massless fields of arbitrary spin in the de sitter space and initial data for a higher spin superalgebra,” Fortsch. Phys. 35 (1987) 741–770.
  64. M. A. Vasiliev, “Consistent equations for interacting massless fields of all spins in the first order in curvatures,” Annals Phys. 190 (1989) 59–106.
  65. A. S. Cattaneo and G. Felder, “A Path integral approach to the Kontsevich quantization formula,” Commun. Math. Phys. 212 (2000) 591–611, arXiv:math/9902090.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.