Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fractional-statistics-induced entanglement from Andreev-like tunneling

Published 27 Dec 2023 in cond-mat.mes-hall and cond-mat.str-el | (2312.16556v2)

Abstract: The role of anyonic statistics stands as a cornerstone in the landscape of topological quantum techniques. While recent years have brought forth encouraging and persuasive strides in detecting anyons, a significant facet remains unexplored, especially in view of connecting anyonic physics to quantum information platforms -- whether and how entanglement can be generated by anyonic braiding. Here, we demonstrate that even when two anyonic subsystems (represented by anyonic beams) are connected only by electron tunneling, entanglement between them, manifesting fractional statistics, is generated. To demonstrate this physics, we rely on a platform where fractional quantum Hall edges are bridged by a quantum point contact that allows only transmission of fermions (so-called Andreev-like tunneling). This invokes the physics of two-beam collisions in an anyonic Hong-Ou-Mandel collider, accompanied by a process that we dub anyon-quasihole braiding. We define an entanglement pointer -- a current-noise-based function tailored to quantify entanglement associated with quasiparticle fractional statistics. Our work, which exposes, both in theory and in experiment, entanglement associated with anyonic statistics and braiding, prospectively paves the way to the exploration of entanglement induced by non-Abelian statistics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. Arovas, D., Schrieffer, J.R., Wilczek, F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984) https://doi.org/10.1103/PhysRevLett.53.722 Kitaev [2001] Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Uspekhi Fizicheskikh Nauk (UFN) 44(10S), 131–136 (2001) https://doi.org/10.1070/1063-7869/44/10s/s29 Mong et al. [2014] Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014) https://doi.org/10.1103/PhysRevX.4.011036 Saminadayar et al. [1997] Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Uspekhi Fizicheskikh Nauk (UFN) 44(10S), 131–136 (2001) https://doi.org/10.1070/1063-7869/44/10s/s29 Mong et al. [2014] Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014) https://doi.org/10.1103/PhysRevX.4.011036 Saminadayar et al. [1997] Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014) https://doi.org/10.1103/PhysRevX.4.011036 Saminadayar et al. [1997] Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  2. Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Uspekhi Fizicheskikh Nauk (UFN) 44(10S), 131–136 (2001) https://doi.org/10.1070/1063-7869/44/10s/s29 Mong et al. [2014] Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014) https://doi.org/10.1103/PhysRevX.4.011036 Saminadayar et al. [1997] Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014) https://doi.org/10.1103/PhysRevX.4.011036 Saminadayar et al. [1997] Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  3. Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Universal topological quantum computation from a superconductor-Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014) https://doi.org/10.1103/PhysRevX.4.011036 Saminadayar et al. [1997] Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  4. Saminadayar, L., Glattli, D.C., Jin, Y., Etienne, B.: Observation of the e/3𝑒3\mathit{e}\mathit{/}3italic_e / 3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997) https://doi.org/10.1103/PhysRevLett.79.2526 de Picciotto et al. [1998] de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  5. de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., Mahalu, D.: Direct observation of a fractional charge. Physica B: Condensed Matter 249-251, 395–400 (1998) https://doi.org/10.1016/S0921-4526(98)00139-2 Camino et al. [2005] Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  6. Camino, F.E., Zhou, W., Goldman, V.J.: Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B 72, 075342 (2005) https://doi.org/10.1103/PhysRevB.72.075342 Ofek et al. [2010] Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  7. Ofek, N., Bid, A., Heiblum, M., Stern, A., Umansky, V., Mahalu, D.: Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences 107(12), 5276–5281 (2010) https://doi.org/10.1073/pnas.0912624107 https://www.pnas.org/content/107/12/5276.full.pdf Willett et al. [2013] Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  8. Willett, R.L., Nayak, C., Shtengel, K., Pfeiffer, L.N., West, K.W.: Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν=5/2𝜈52\nu=5/2italic_ν = 5 / 2. Phys. Rev. Lett. 111, 186401 (2013) https://doi.org/10.1103/PhysRevLett.111.186401 Nakamura et al. [2019] Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  9. Nakamura, J., Fallahi, S., Sahasrabudhe, H., Rahman, R., Liang, S., Gardner, G.C., Manfra, M.J.: Aharonov–Bohm interference of fractional quantum Hall edge modes. Nature Physics 15(6), 563–569 (2019) https://doi.org/10.1038/s41567-019-0441-8 Nakamura et al. [2020] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  10. Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nature Physics 16(9), 931–936 (2020) https://doi.org/10.1038/s41567-020-1019-1 Nakamura et al. [2022] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  11. Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nature Communications 13(1), 344 (2022) https://doi.org/10.1038/s41467-022-27958-w Nakamura et al. [2023] Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  12. Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Fabry-Perot interferometry at the ν𝜈\nuitalic_ν = 2/5 fractional quantum Hall state (2023) Bartolomei et al. [2020] Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  13. Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020) https://doi.org/10.1126/science.aaz5601 Glidic et al. [2023] Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  14. Glidic, P., Maillet, O., Aassime, A., Piquard, C., Cavanna, A., Gennser, U., Jin, Y., Anthore, A., Pierre, F.: Cross-correlation investigation of anyon statistics in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and 2/5252/52 / 5 fractional quantum Hall states. Phys. Rev. X 13, 011030 (2023) https://doi.org/10.1103/PhysRevX.13.011030 Lee et al. [2023] Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  15. Lee, J.-Y.M., Hong, C., Alkalay, T., Schiller, N., Umansky, V., Heiblum, M., Oreg, Y., Sim, H.-S.: Partitioning of diluted anyons reveals their braiding statistics. Nature 617(7960), 277–281 (2023) Ruelle et al. [2023] Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  16. Ruelle, M., Frigerio, E., Berroir, J.-M., Plaçais, B., Rech, J., Cavanna, A., Gennser, U., Jin, Y., Fève, G.: Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. X 13, 011031 (2023) https://doi.org/10.1103/PhysRevX.13.011031 Bhattacharyya et al. [2019] Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  17. Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D., Umansky, V.: Melting of interference in the fractional quantum Hall effect: Appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019) https://doi.org/10.1103/PhysRevLett.122.246801 Dutta et al. [2022] Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  18. Dutta, B., Umansky, V., Banerjee, M., Heiblum, M.: Isolated ballistic non-abelian interface channel. Science 377(6611), 1198–1201 (2022) https://doi.org/10.1126/science.abm6571 Kapfer et al. [2019] Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  19. Kapfer, M., Roulleau, P., Santin, M., Farrer, I., Ritchie, D.A., Glattli, D.C.: A Josephson relation for fractionally charged anyons. Science 363(6429), 846–849 (2019) https://doi.org/10.1126/science.aau3539 Safi and Schulz [1995] Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  20. Safi, I., Schulz, H.J.: Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, 17040–17043 (1995) https://doi.org/10.1103/PhysRevB.52.R17040 Sandler et al. [1998] Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  21. Sandler, N.P., Chamon, C.d.C., Fradkin, E.: Andreev reflection in the fractional quantum Hall effect. Phys. Rev. B 57, 12324–12332 (1998) https://doi.org/10.1103/PhysRevB.57.12324 Hashisaka et al. [2021] Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  22. Hashisaka, M., Jonckheere, T., Akiho, T., Sasaki, S., Rech, J., Martin, T., Muraki, K.: Andreev reflection of fractional quantum Hall quasiparticles. Nature Communications 12, 2794 (2021) https://doi.org/10.1038/s41467-021-23160-6 Cohen et al. [2022] Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  23. Cohen, L.A., Samuelson, N.L., Wang, T., Taniguchi, T., Watanabe, K., Zaletel, M.P., Young, A.F.: Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact (2022) Glidic et al. [2023] Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  24. Glidic, P., Maillet, O., Piquard, C., Aassime, A., Cavanna, A., Jin, Y., Gennser, U., Anthore, A., Pierre, F.: Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime. Nature Communications 14(1), 514 (2023) https://doi.org/10.1038/s41467-023-36080-4 Comforti et al. [2002] Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  25. Comforti, E., Chung, Y.C., Heiblum, M., Umansky, V., Mahalu, D.: Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature 416, 515–518 (2002) https://doi.org/10.1038/416515a Safi et al. [2001] Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  26. Safi, I., Devillard, P., Martin, T.: Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86, 4628–4631 (2001) https://doi.org/10.1103/PhysRevLett.86.4628 Kane and Fisher [2003] Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  27. Kane, C.L., Fisher, M.P.A.: Shot noise and the transmission of dilute Laughlin quasiparticles. Phys. Rev. B 67, 045307 (2003) https://doi.org/10.1103/PhysRevB.67.045307 Vishveshwara [2003] Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  28. Vishveshwara, S.: Revisiting the Hanbury Brown–Twiss setup for fractional statistics. Phys. Rev. Lett. 91, 196803 (2003) https://doi.org/10.1103/PhysRevLett.91.196803 Kim et al. [2005] Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  29. Kim, E.-A., Lawler, M., Vishveshwara, S., Fradkin, E.: Signatures of fractional statistics in noise experiments in quantum Hall fluids. Phys. Rev. Lett. 95, 176402 (2005) https://doi.org/10.1103/PhysRevLett.95.176402 Law et al. [2006] Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  30. Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006) https://doi.org/10.1103/PhysRevB.74.045319 Feldman et al. [2007] Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  31. Feldman, D.E., Gefen, Y., Kitaev, A., Law, K.T., Stern, A.: Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007) https://doi.org/10.1103/PhysRevB.76.085333 Rosenow and Halperin [2007] Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  32. Rosenow, B., Halperin, B.I.: Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007) https://doi.org/10.1103/PhysRevLett.98.106801 Campagnano et al. [2012] Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  33. Campagnano, G., Zilberberg, O., Gornyi, I.V., Feldman, D.E., Potter, A.C., Gefen, Y.: Hanbury Brown–Twiss interference of anyons. Phys. Rev. Lett. 109, 106802 (2012) https://doi.org/10.1103/PhysRevLett.109.106802 Campagnano et al. [2013] Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  34. Campagnano, G., Zilberberg, O., Gornyi, I.V., Gefen, Y.: Hanbury Brown and Twiss correlations in quantum Hall systems. Phys. Rev. B 88, 235415 (2013) https://doi.org/10.1103/PhysRevB.88.235415 Rosenow et al. [2016] Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  35. Rosenow, B., Levkivskyi, I.P., Halperin, B.I.: Current correlations from a mesoscopic anyon collider. Phys. Rev. Lett. 116, 156802 (2016) https://doi.org/10.1103/PhysRevLett.116.156802 Campagnano et al. [2016] Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  36. Campagnano, G., Lucignano, P., Giuliano, D.: Chirality and current-current correlation in fractional quantum Hall systems. Phys. Rev. B 93, 075441 (2016) https://doi.org/10.1103/PhysRevB.93.075441 Han et al. [2016] Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  37. Han, C., Park, J., Gefen, Y., Sim, H.-S.: Topological vacuum bubbles by anyon braiding. Nature Communications 7(1), 11131 (2016) https://doi.org/10.1038/ncomms11131 Lee et al. [2019] Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  38. Lee, B., Han, C., Sim, H.-S.: Negative excess shot noise by anyon braiding. Phys. Rev. Lett. 123, 016803 (2019) https://doi.org/10.1103/PhysRevLett.123.016803 Rosenow and Stern [2020] Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  39. Rosenow, B., Stern, A.: Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020) https://doi.org/10.1103/PhysRevLett.124.106805 Rech et al. [2020] Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  40. Rech, J., Jonckheere, T., Grémaud, B., Martin, T.: Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect. Phys. Rev. Lett. 125, 086801 (2020) https://doi.org/10.1103/PhysRevLett.125.086801 Schiller et al. [2023] Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  41. Schiller, N., Shapira, Y., Stern, A., Oreg, Y.: Anyon statistics through conductance measurements of time-domain interferometry. Phys. Rev. Lett. 131, 186601 (2023) https://doi.org/10.1103/PhysRevLett.131.186601 Morel et al. [2022] Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  42. Morel, T., Lee, J.-Y.M., Sim, H.-S., Mora, C.: Fractionalization and anyonic statistics in the integer quantum Hall collider. Phys. Rev. B 105, 075433 (2022) https://doi.org/10.1103/PhysRevB.105.075433 Schiller et al. [2022] Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  43. Schiller, N., Oreg, Y., Snizhko, K.: Extracting the scaling dimension of quantum Hall quasiparticles from current correlations. Phys. Rev. B 105, 165150 (2022) https://doi.org/10.1103/PhysRevB.105.165150 Zhang et al. [2022] Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  44. Zhang, G., Gornyi, I.V., Spånslätt, C.: Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics. Phys. Rev. B 105, 195423 (2022) https://doi.org/10.1103/PhysRevB.105.195423 Lee and Sim [2022] Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  45. Lee, J.-Y.M., Sim, H.-S.: Non-Abelian anyon collider. Nature Communications 13(1), 6660 (2022) https://doi.org/10.1038/s41467-022-34329-y Jonckheere et al. [2023] Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  46. Jonckheere, T., Rech, J., Grémaud, B., Martin, T.: Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations. Phys. Rev. Lett. 130, 186203 (2023) https://doi.org/10.1103/PhysRevLett.130.186203 Iyer et al. [2023] Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  47. Iyer, K., Martin, T., Rech, J., Jonckheere, T.: Quasiparticle Andreev reflection in the laughlin fractions of the fractional quantum hall effect. Phys. Rev. B 108, 155404 (2023) https://doi.org/10.1103/PhysRevB.108.155404 Nielsen and Chuang [2010] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  48. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667 Wilde [2013] Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  49. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139525343 Nayak et al. [2008] Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  50. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008) https://doi.org/10.1103/RevModPhys.80.1083 Alicea and Fendley [2016] Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  51. Alicea, J., Fendley, P.: Topological phases with parafermions: Theory and blueprints. Annual Review of Condensed Matter Physics 7(1), 119–139 (2016) https://doi.org/10.1146/annurev-conmatphys-031115-011336 https://doi.org/10.1146/annurev-conmatphys-031115-011336 Zhang et al. [2022] Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  52. Zhang, G., Hong, C., Alkalay, T., Umansky, V., Heiblum, M., Gornyi, I.V., Gefen, Y.: Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer (2022) Bell [1964] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  53. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1, 195–200 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 Chtchelkatchev et al. [2002] Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  54. Chtchelkatchev, N.M., Blatter, G., Lesovik, G.B., Martin, T.: Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002) https://doi.org/10.1103/PhysRevB.66.161320 Fendley et al. [1995] Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  55. Fendley, P., Ludwig, A.W.W., Saleur, H.: Exact nonequilibrium dc shot noise in Luttinger liquids and fractional quantum Hall devices. Phys. Rev. Lett. 75, 2196–2199 (1995) https://doi.org/10.1103/PhysRevLett.75.2196 Shopen et al. [2005] Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  56. Shopen, E., Gefen, Y., Meir, Y.: Quasiparticle tunneling through a barrier in the fractional quantum Hall regime. Phys. Rev. Lett. 95, 136803 (2005) https://doi.org/10.1103/PhysRevLett.95.136803 Weiss [2012] Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  57. Weiss, U.: Quantum Dissipative Systems, 4th edn. World Scientific, Singapore (2012). https://doi.org/10.1142/8334 Bruus and Flensberg [2004] Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  58. Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd edn. Oxford University Press, London (2004) Mahan [2000] Mahan, G.D.: Many-particle Physics. Springer, New York (2000) Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  59. Mahan, G.D.: Many-particle Physics. Springer, New York (2000)
  60. C. L. Kane and Matthew P. A. Fisher, “Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas,” Phys. Rev. B 46, 15233–15262 (1992).
  61. Gerald D. Mahan, Many-particle physics (Springer, New York, 2000).
  62. Henrik Bruus and Karsten Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd ed. (Oxford University Press, London, 2004).
  63. Bernd Rosenow, Ivan P. Levkivskyi,  and Bertrand I. Halperin, “Current correlations from a mesoscopic anyon collider,” Phys. Rev. Lett. 116, 156802 (2016).
  64. June-Young M. Lee and H. S. Sim, “Non-Abelian anyon collider,” Nature Communications 13, 6660 (2022).
  65. June-Young M. Lee, Changki Hong, Tomer Alkalay, Noam Schiller, Vladimir Umansky, Moty Heiblum, Yuval Oreg,  and H. S. Sim, “Partitioning of diluted anyons reveals their braiding statistics,” Nature 617, 277—281 (2023).
  66. Michele Filippone and Piet W. Brouwer, “Tunneling into quantum wires: Regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions,” Phys. Rev. B 94, 235426 (2016).
  67. Tom Morel, June-Young M. Lee, H.-S. Sim,  and Christophe Mora, “Fractionalization and anyonic statistics in the integer quantum Hall collider,” Phys. Rev. B 105, 075433 (2022).
  68. J. Rech, T. Jonckheere, B. Grémaud,  and T. Martin, “Negative delta-T𝑇Titalic_T noise in the fractional quantum Hall effect,” Phys. Rev. Lett. 125, 086801 (2020).
  69. Gu Zhang, Igor V. Gornyi,  and Christian Spånslätt, “Delta-T𝑇Titalic_T noise for weak tunneling in one-dimensional systems: Interactions versus quantum statistics,” Phys. Rev. B 105, 195423 (2022a).
  70. Noam Schiller, Yuval Oreg,  and Kyrylo Snizhko, “Extracting the scaling dimension of quantum Hall quasiparticles from current correlations,” Phys. Rev. B 105, 165150 (2022).
  71. G. Campagnano, P. Lucignano,  and D. Giuliano, “Chirality and current-current correlation in fractional quantum Hall systems,” Phys. Rev. B 93, 075441 (2016).
  72. T. Giamarchi, Quantum Physics in One Dimension (Oxford Univ. Press, Oxford UK, 2004).
  73. I. Safi and H. J. Schulz, “Transport in an inhomogeneous interacting one-dimensional system,” Phys. Rev. B 52, R17040–R17043 (1995).
  74. I. Safi, “A dynamic scattering approach for a gated interacting wire,” The European Physical Journal B - Condensed Matter and Complex Systems 12, 451–455 (1999).
  75. I.V. Protopopov, Yuval Gefen,  and A.D. Mirlin, “Transport in a disordered ν=2/3𝜈23\nu=2/3italic_ν = 2 / 3 fractional quantum Hall junction,” Annals of Physics 385, 287–327 (2017).
  76. C. Spånslätt, Yuval Gefen, I. V. Gornyi,  and D. G. Polyakov, “Contacts, equilibration, and interactions in fractional quantum Hall edge transport,” Phys. Rev. B 104, 115416 (2021).
  77. Th. Martin and R. Landauer, “Wave-packet approach to noise in multichannel mesoscopic systems,” Phys. Rev. B 45, 1742–1755 (1992).
  78. Ya.M. Blanter and M. Büttiker, “Shot noise in mesoscopic conductors,” Physics Reports 336, 1–166 (2000).
  79. Gabriele Campagnano, Oded Zilberberg, Igor V. Gornyi, Dmitri E. Feldman, Andrew C. Potter,  and Yuval Gefen, “Hanbury Brown–Twiss interference of anyons,” Phys. Rev. Lett. 109, 106802 (2012).
  80. P. Glidic, O. Maillet, C. Piquard, A. Aassime, A. Cavanna, Y. Jin, U. Gennser, A. Anthore,  and F. Pierre, “Quasiparticle Andreev scattering in the ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 fractional quantum Hall regime,” Nature Communications 14, 514 (2023).
  81. Gu Zhang, Changki Hong, Tomer Alkalay, Vladimir Umansky, Moty Heiblum, Igor V. Gornyi,  and Yuval Gefen, “Measuring statistics-induced entanglement entropy with a Hong-Ou-Mandel interferometer,”  (2022b), arXiv:2210.15520 [cond-mat.mes-hall] .
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.