Targeted materials discovery using Bayesian algorithm execution (2312.16078v1)
Abstract: Rapid discovery and synthesis of new materials requires intelligent data acquisition strategies to navigate large design spaces. A popular strategy is Bayesian optimization, which aims to find candidates that maximize material properties; however, materials design often requires finding specific subsets of the design space which meet more complex or specialized goals. We present a framework that captures experimental goals through straightforward user-defined filtering algorithms. These algorithms are automatically translated into one of three intelligent, parameter-free, sequential data acquisition strategies (SwitchBAX, InfoBAX, and MeanBAX). Our framework is tailored for typical discrete search spaces involving multiple measured physical properties and short time-horizon decision making. We evaluate this approach on datasets for TiO$_2$ nanoparticle synthesis and magnetic materials characterization, and show that our methods are significantly more efficient than state-of-the-art approaches.
- J. B. Goodenough and K.-S. Park, “The li-ion rechargeable battery: a perspective,” Journal of the American Chemical Society 135, 1167–1176 (2013).
- P. A. Lee, N. Nagaosa, and X.-G. Wen, “Doping a mott insulator: Physics of high-temperature superconductivity,” Reviews of modern physics 78, 17 (2006).
- C. Suh, C. Fare, J. A. Warren, and E. O. Pyzer-Knapp, “Evolving the materials genome: How machine learning is fueling the next generation of materials discovery,” Annual Review of Materials Research 50, 1–25 (2020).
- J. H. Montoya, M. Aykol, A. Anapolsky, C. B. Gopal, P. K. Herring, J. S. Hummelshøj, L. Hung, H.-K. Kwon, D. Schweigert, S. Sun, et al., “Toward autonomous materials research: Recent progress and future challenges,” Applied Physics Reviews 9 (2022).
- B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop: A review of bayesian optimization,” Proceedings of the IEEE 104, 148–175 (2015).
- A. G. Kusne, H. Yu, C. Wu, H. Zhang, J. Hattrick-Simpers, B. DeCost, S. Sarker, C. Oses, C. Toher, S. Curtarolo, et al., “On-the-fly closed-loop materials discovery via bayesian active learning,” Nature communications 11, 5966 (2020).
- M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization (Mit Press, 2019).
- A. Dave, J. Mitchell, K. Kandasamy, H. Wang, S. Burke, B. Paria, B. Póczos, J. Whitacre, and V. Viswanathan, “Autonomous discovery of battery electrolytes with robotic experimentation and machine learning,” Cell Reports Physical Science 1 (2020).
- M. T. Emmerich, A. H. Deutz, and J. W. Klinkenberg, “Hypervolume-based expected improvement: Monotonicity properties and exact computation,” in 2011 IEEE Congress of Evolutionary Computation (CEC) (IEEE, 2011) pp. 2147–2154.
- S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected hypervolume improvement for parallel multi-objective bayesian optimization,” Advances in Neural Information Processing Systems 33, 9851–9864 (2020).
- S. Daulton, M. Balandat, and E. Bakshy, “Parallel bayesian optimization of multiple noisy objectives with expected hypervolume improvement,” Advances in Neural Information Processing Systems 34, 2187–2200 (2021).
- J. Knowles, “Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems,” IEEE transactions on evolutionary computation 10, 50–66 (2006).
- A. Wang, H. Liang, A. McDannald, I. Takeuchi, and A. G. Kusne, “Benchmarking active learning strategies for materials optimization and discovery,” Oxford Open Materials Science 2, itac006 (2022).
- F. Hase, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, “Phoenics: a bayesian optimizer for chemistry,” ACS central science 4, 1134–1145 (2018).
- B. Rohr, H. S. Stein, D. Guevarra, Y. Wang, J. A. Haber, M. Aykol, S. K. Suram, and J. M. Gregoire, “Benchmarking the acceleration of materials discovery by sequential learning,” Chemical science 11, 2696–2706 (2020).
- T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, and T. Oguchi, “Crystal structure prediction accelerated by bayesian optimization,” Physical Review Materials 2, 013803 (2018).
- R. J. Hickman, M. Aldeghi, F. Häse, and A. Aspuru-Guzik, “Bayesian optimization with known experimental and design constraints for chemistry applications,” Digital Discovery 1, 732–744 (2022).
- H. C. Herbol, W. Hu, P. Frazier, P. Clancy, and M. Poloczek, “Efficient search of compositional space for hybrid organic–inorganic perovskites via bayesian optimization,” npj Computational Materials 4, 51 (2018).
- Y. Zhang, D. W. Apley, and W. Chen, “Bayesian optimization for materials design with mixed quantitative and qualitative variables,” Scientific reports 10, 4924 (2020).
- Q. Liang, A. E. Gongora, Z. Ren, A. Tiihonen, Z. Liu, S. Sun, J. R. Deneault, D. Bash, F. Mekki-Berrada, S. A. Khan, et al., “Benchmarking the performance of bayesian optimization across multiple experimental materials science domains,” npj Computational Materials 7, 188 (2021).
- B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, and A. G. Doyle, “Bayesian reaction optimization as a tool for chemical synthesis,” Nature 590, 89–96 (2021).
- F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, and A. Aspuru-Guzik, “Gryffin: An algorithm for bayesian optimization of categorical variables informed by expert knowledge,” Applied Physics Reviews 8 (2021).
- K. Hanaoka, “Bayesian optimization for goal-oriented multi-objective inverse material design,” Iscience 24 (2021).
- M. Karasuyama, H. Kasugai, T. Tamura, and K. Shitara, “Computational design of stable and highly ion-conductive materials using multi-objective bayesian optimization: Case studies on diffusion of oxygen and lithium,” Computational Materials Science 184, 109927 (2020).
- B. Hu, Z. Wang, C. Du, W. Zou, W. Wu, J. Tang, J. Ai, H. Zhou, R. Chen, and B. Shan, “Multi-objective bayesian optimization accelerated design of tpms structures,” International Journal of Mechanical Sciences 244, 108085 (2023).
- W. Xu, Z. Liu, R. T. Piper, and J. W. Hsu, “Bayesian optimization of photonic curing process for flexible perovskite photovoltaic devices,” Solar Energy Materials and Solar Cells 249, 112055 (2023).
- X. Wang, Y. Huang, X. Xie, Y. Liu, Z. Huo, M. Lin, H. Xin, and R. Tong, “Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide,” Nature Communications 14, 3647 (2023).
- D. Packwood et al., Bayesian optimization for materials science (Springer, 2017).
- M. M. Noack, K. G. Yager, M. Fukuto, G. S. Doerk, R. Li, and J. A. Sethian, “A kriging-based approach to autonomous experimentation with applications to x-ray scattering,” Scientific reports 9, 11809 (2019).
- N. J. Szymanski, C. J. Bartel, Y. Zeng, M. Diallo, H. Kim, and G. Ceder, “Adaptively driven x-ray diffraction guided by machine learning for autonomous phase identification,” npj Computational Materials 9, 31 (2023a).
- S. Ament, M. Amsler, D. R. Sutherland, M.-C. Chang, D. Guevarra, A. B. Connolly, J. M. Gregoire, M. O. Thompson, C. P. Gomes, and R. B. van Dover, “Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams,” Science Advances 7, eabg4930 (2021).
- I. Bogunovic, J. Scarlett, A. Krause, and V. Cevher, “Truncated variance reduction: A unified approach to bayesian optimization and level-set estimation,” Advances in neural information processing systems 29 (2016).
- H. Ha, S. Gupta, S. Rana, and S. Venkatesh, “High dimensional level set estimation with bayesian neural network,” in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35 (2021) pp. 12095–12103.
- K. Terayama, R. Tamura, Y. Nose, H. Hiramatsu, H. Hosono, Y. Okuno, and K. Tsuda, “Efficient construction method for phase diagrams using uncertainty sampling,” Physical Review Materials 3, 033802 (2019).
- C. Dai and S. C. Glotzer, “Efficient phase diagram sampling by active learning,” The Journal of Physical Chemistry B 124, 1275–1284 (2020).
- A. Y. Fong, L. Pellouchoud, M. Davidson, R. C. Walroth, C. Church, E. Tcareva, L. Wu, K. Peterson, B. Meredig, and C. J. Tassone, “Utilization of machine learning to accelerate colloidal synthesis and discovery,” The Journal of Chemical Physics 154, 224201 (2021).
- E. Y. Feng, R. Zelaya, A. Holm, A.-C. Yang, and M. Cargnello, “Investigation of the optical properties of uniform platinum, palladium, and nickel nanocrystals enables direct measurements of their concentrations in solution,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 601, 125007 (2020).
- J. Rivnay, S. Inal, B. A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D. M. Delongchamp, and G. G. Malliaras, “Structural control of mixed ionic and electronic transport in conducting polymers,” Nature communications 7, 11287 (2016).
- M. C. Prentiss, D. J. Wales, and P. G. Wolynes, “The energy landscape, folding pathways and the kinetics of a knotted protein,” PLoS computational biology 6, e1000835 (2010).
- A. R. Singh, J. H. Montoya, B. A. Rohr, C. Tsai, A. Vojvodic, and J. K. Nørskov, “Computational design of active site structures with improved transition-state scaling for ammonia synthesis,” ACS Catalysis 8, 4017–4024 (2018).
- N. Foloppe, L. M. Fisher, R. Howes, A. Potter, A. G. Robertson, and A. E. Surgenor, “Identification of chemically diverse chk1 inhibitors by receptor-based virtual screening,” Bioorganic & medicinal chemistry 14, 4792–4802 (2006).
- M. R. Palacín and A. de Guibert, “Why do batteries fail?” Science 351, 1253292 (2016).
- S. L. Scott, “A matter of life (time) and death,” (2018).
- M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar energy materials and solar cells 92, 686–714 (2008).
- L. Di and E. H. Kerns, Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization (Academic press, 2015).
- W. Neiswanger, K. A. Wang, and S. Ermon, “Bayesian algorithm execution: Estimating computable properties of black-box functions using mutual information,” in International Conference on Machine Learning (PMLR, 2021) pp. 8005–8015.
- S. A. Miskovich, W. Neiswanger, W. Colocho, C. Emma, J. Garrahan, T. Maxwell, C. Mayes, S. Ermon, A. Edelen, and D. Ratner, “Bayesian algorithm execution for tuning particle accelerator emittance with partial measurements,” arXiv preprint arXiv:2209.04587 (2022).
- R. Katsube, K. Terayama, R. Tamura, and Y. Nose, “Experimental establishment of phase diagrams guided by uncertainty sampling: an application to the deposition of zn–sn–p films by molecular beam epitaxy,” ACS Materials Letters 2, 571–575 (2020).
- J. A. G. Torres, P. C. Jennings, M. H. Hansen, J. R. Boes, and T. Bligaard, “Low-scaling algorithm for nudged elastic band calculations using a surrogate machine learning model,” Physical review letters 122, 156001 (2019).
- Y. Tian, R. Yuan, D. Xue, Y. Zhou, Y. Wang, X. Ding, J. Sun, and T. Lookman, “Determining multi-component phase diagrams with desired characteristics using active learning,” Advanced Science 8, 2003165 (2021).
- C. Tassone and A. Mehta, “Aggregation and structuring of materials and chemicals data from diverse sources,” Tech. Rep. (SLAC National Accelerator Lab., Menlo Park, CA (United States), 2019).
- Y. K. Yoo, Q. Xue, Y. S. Chu, S. Xu, U. Hangen, H.-C. Lee, W. Stein, and X.-D. Xiang, “Identification of amorphous phases in the fe–ni–co ternary alloy system using continuous phase diagram material chips,” Intermetallics 14, 241–247 (2006).
- V. Antonov, P. Oppeneer, A. Yaresko, A. Y. Perlov, and T. Kraft, “Computationally based explanation of the peculiar magneto-optical properties of ptmnsb and related ternary compounds,” Physical Review B 56, 13012 (1997).
- M. Abolhasani and E. Kumacheva, “The rise of self-driving labs in chemical and materials sciences,” Nature Synthesis , 1–10 (2023).
- B. P. MacLeod, F. G. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. Yunker, M. B. Rooney, J. R. Deeth, et al., “Self-driving laboratory for accelerated discovery of thin-film materials,” Science Advances 6, eaaz8867 (2020).
- B. P. MacLeod, F. G. Parlane, C. C. Rupnow, K. E. Dettelbach, M. S. Elliott, T. D. Morrissey, T. H. Haley, O. Proskurin, M. B. Rooney, N. Taherimakhsousi, et al., “A self-driving laboratory advances the pareto front for material properties,” Nature communications 13, 995 (2022).
- N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He, D. Milsted, M. J. McDermott, M. Gallant, E. D. Cubuk, A. Merchant, H. Kim, A. Jain, C. J. Bartel, K. Persson, Y. Zeng, and G. Ceder, “An autonomous laboratory for the accelerated synthesis of novel materials,” Nature (2023b), 10.1038/s41586-023-06734-w.
- S. Chitturi, A. Ramdas, and W. Neiswanger, “src47/multibax-sklearn,” (2023a).
- S. Chitturi, A. Ramdas, and W. Neiswanger, “src47/materials-bax-gpflow: Paper submission,” (2023b).
- A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman, “GPflow: A Gaussian process library using TensorFlow,” Journal of Machine Learning Research 18, 1–6 (2017).
- V. Picheny, J. Berkeley, H. B. Moss, H. Stojic, U. Granta, S. W. Ober, A. Artemev, K. Ghani, A. Goodall, A. Paleyes, S. Vakili, S. Pascual-Diaz, S. Markou, J. Qing, N. R. B. S. Loka, and I. Couckuyt, “Trieste: Efficiently exploring the depths of black-box functions with tensorflow,” (2023).
- M. H. et al, “python-ternary: Ternary plots in python,” Zenodo 10.5281/zenodo.594435 10.5281/zenodo.594435.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.