Limitations of Caldeira-Leggett model for description of phase transitions in superconducting circuits (2312.15951v3)
Abstract: The inherent complexity of system-bath interactions often requires making critical approximations, which we here show to have a radical influence on the renormalization group flow and the resulting phase diagram. Specifically, for the Caldeira-Leggett model Schmid and Bulgadaev (SB) predicted a phase transition, whose experimental verification in resistive superconducting circuits is currently hotly debated. For normal metal and Josephson junction array resistors, we show that the mapping to Caldeira-Leggett is only exact when applying approximations which decompactify the superconducting phase. We show that there exist treatments that retain phase compactness, which immediately lead to a phase diagram depending on four instead of two parameters. While we still find an SB-like transition in the transmon regime, the critical parameter is controlled exclusively by the capacitive coupling. In contrast, the Cooper pair box maps to the anisotropic Kondo model, where a pseudoferromagnetic phase is not allowed for regular electrostatic interactions.
- A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
- G.-L. Ingold and Y. V. Nazarov, Charge tunneling rates in ultrasmall junctions, in Single Charge Tunneling: Coulomb Blockade Phenomena In Nanostructures, edited by H. Grabert and M. H. Devoret (Springer US, Boston, MA, 1992) pp. 21–107.
- A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).
- S. A. Bulgadaev, JETP Letters 39, 315 (1984).
- C. Aslangul, N. Pottier, and D. Saint-James, Physics Letters A 111, 175 (1985).
- F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. Lett. 54, 263 (1985).
- G. Schön and A. Zaikin, Physics Reports 198, 237 (1990).
- C. P. Herrero and A. D. Zaikin, Phys. Rev. B 65, 104516 (2002).
- N. Kimura and T. Kato, Phys. Rev. B 69, 012504 (2004).
- P. Werner and M. Troyer, Phys. Rev. Lett. 95, 060201 (2005).
- S. L. Lukyanov and P. Werner, Journal of Statistical Mechanics: Theory and Experiment 2007, P06002 (2007).
- P. J. Hakonen and E. B. Sonin, Phys. Rev. X 11, 018001 (2021).
- M. Houzet, T. Yamamoto, and L. I. Glazman, Microwave spectroscopy of schmid transition (2023), arXiv:2308.16072 [cond-mat.supr-con] .
- A. Burshtein and M. Goldstein, Inelastic decay from integrability (2023), arXiv:2308.15542 [quant-ph] .
- T. Sépulcre, S. Florens, and I. Snyman, Phys. Rev. Lett. 131, 199701 (2023).
- Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).
- P. W. Anderson, Journal of Physics C: Solid State Physics 3, 2436 (1970).
- A. Tsvelick and P. Wiegmann, Advances in Physics 32, 453 (1983), https://doi.org/10.1080/00018738300101581 .
- D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
- J. Rollbühler and H. Grabert, Phys. Rev. Lett. 87, 126804 (2001).
- F. D. M. Haldane, Journal of Physics C: Solid State Physics 14, 2585 (1981).
- R. Rajaraman and J. Bell, Physics Letters B 116, 151 (1982).
- D. Loss and K. Mullen, Phys. Rev. A 43, 2129 (1991).
- K. Mullen, D. Loss, and H. T. C. Stoof, Phys. Rev. B 47, 2689 (1993).
- D. N. Aristov, Phys. Rev. B 57, 12825 (1998).
- D. A. Ivanov, A. G. Abanov, and V. V. Cheianov, Journal of Physics A: Mathematical and Theoretical 46, 085003 (2013).
- R.-P. Riwar, Phys. Rev. B 100, 245416 (2019).
- R.-P. Riwar, SciPost Physics 10, 093 (2021).
- M. A. Javed, J. Schwibbert, and R.-P. Riwar, Phys. Rev. B 107, 035408 (2023).
- R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
- A. Hosseinkhani and G. Catelani, Phys. Rev. B 97, 054513 (2018).
- Note that the capacitive coupling term ∼λzsimilar-toabsentsuperscript𝜆𝑧\sim\lambda^{z}∼ italic_λ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT can be generally written inside the charging energy ∼ECsimilar-toabsentsubscript𝐸𝐶\sim E_{C}∼ italic_E start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT upon quadratic completion, such that the electron-electron interactions in the normal metal may have an artifical addition due to a quadratic term ∼(λz)2similar-toabsentsuperscriptsuperscript𝜆𝑧2\sim(\lambda^{z})^{2}∼ ( italic_λ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.
- L. González Rosado, Electron-hole diffusion in disordered superconductors, Ph.D. thesis, RWTH Aachen University (2021).
- See Supplemental Material at the end of document.
- A. Cottet, Implementation of a quantum bit in a superconducting circuit, Ph.D. thesis, Université Paris VI (2002).
- J. Ulrich and F. Hassler, Phys. Rev. B 94, 094505 (2016).
- C. Koliofoti and R.-P. Riwar, arXiv:2204.13633 .
- A. G. Abanov, D. A. Ivanov, and Y. Qian, J. Phys. A Math. Theor. 44, 485001 (2011).
- D. A. Ivanov and I. P. Levkivskyi, Europhysics Letters 113, 17009 (2016).
- W. A. Little, Phys. Rev. 134, A1416 (1964).
- R. Landauer, Collect. Phenom. 2, 167 (1976).
- G. Catalan, D. Jiménez, and A. Gruverman, Nature Materials 14, 137 (2015).
- F. Zhang and C. L. Kane, Phys. Rev. Lett. 113, 036401 (2014).
- K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B 61, 16397 (2000).
- D. B. Gutman, Y. Gefen, and A. D. Mirlin, Phys. Rev. Lett. 105, 256802 (2010).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.