Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Limitations of Caldeira-Leggett model for description of phase transitions in superconducting circuits (2312.15951v3)

Published 26 Dec 2023 in cond-mat.mes-hall and cond-mat.supr-con

Abstract: The inherent complexity of system-bath interactions often requires making critical approximations, which we here show to have a radical influence on the renormalization group flow and the resulting phase diagram. Specifically, for the Caldeira-Leggett model Schmid and Bulgadaev (SB) predicted a phase transition, whose experimental verification in resistive superconducting circuits is currently hotly debated. For normal metal and Josephson junction array resistors, we show that the mapping to Caldeira-Leggett is only exact when applying approximations which decompactify the superconducting phase. We show that there exist treatments that retain phase compactness, which immediately lead to a phase diagram depending on four instead of two parameters. While we still find an SB-like transition in the transmon regime, the critical parameter is controlled exclusively by the capacitive coupling. In contrast, the Cooper pair box maps to the anisotropic Kondo model, where a pseudoferromagnetic phase is not allowed for regular electrostatic interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
  2. G.-L. Ingold and Y. V. Nazarov, Charge tunneling rates in ultrasmall junctions, in Single Charge Tunneling: Coulomb Blockade Phenomena In Nanostructures, edited by H. Grabert and M. H. Devoret (Springer US, Boston, MA, 1992) pp. 21–107.
  3. A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).
  4. S. A. Bulgadaev, JETP Letters 39, 315 (1984).
  5. C. Aslangul, N. Pottier, and D. Saint-James, Physics Letters A 111, 175 (1985).
  6. F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. Lett. 54, 263 (1985).
  7. G. Schön and A. Zaikin, Physics Reports 198, 237 (1990).
  8. C. P. Herrero and A. D. Zaikin, Phys. Rev. B 65, 104516 (2002).
  9. N. Kimura and T. Kato, Phys. Rev. B 69, 012504 (2004).
  10. P. Werner and M. Troyer, Phys. Rev. Lett. 95, 060201 (2005).
  11. S. L. Lukyanov and P. Werner, Journal of Statistical Mechanics: Theory and Experiment 2007, P06002 (2007).
  12. P. J. Hakonen and E. B. Sonin, Phys. Rev. X 11, 018001 (2021).
  13. M. Houzet, T. Yamamoto, and L. I. Glazman, Microwave spectroscopy of schmid transition (2023), arXiv:2308.16072 [cond-mat.supr-con] .
  14. A. Burshtein and M. Goldstein, Inelastic decay from integrability (2023), arXiv:2308.15542 [quant-ph] .
  15. T. Sépulcre, S. Florens, and I. Snyman, Phys. Rev. Lett. 131, 199701 (2023).
  16. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).
  17. P. W. Anderson, Journal of Physics C: Solid State Physics 3, 2436 (1970).
  18. A. Tsvelick and P. Wiegmann, Advances in Physics 32, 453 (1983), https://doi.org/10.1080/00018738300101581 .
  19. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
  20. J. Rollbühler and H. Grabert, Phys. Rev. Lett. 87, 126804 (2001).
  21. F. D. M. Haldane, Journal of Physics C: Solid State Physics 14, 2585 (1981).
  22. R. Rajaraman and J. Bell, Physics Letters B 116, 151 (1982).
  23. D. Loss and K. Mullen, Phys. Rev. A 43, 2129 (1991).
  24. K. Mullen, D. Loss, and H. T. C. Stoof, Phys. Rev. B 47, 2689 (1993).
  25. D. N. Aristov, Phys. Rev. B 57, 12825 (1998).
  26. D. A. Ivanov, A. G. Abanov, and V. V. Cheianov, Journal of Physics A: Mathematical and Theoretical 46, 085003 (2013).
  27. R.-P. Riwar, Phys. Rev. B 100, 245416 (2019).
  28. R.-P. Riwar, SciPost Physics 10, 093 (2021).
  29. M. A. Javed, J. Schwibbert, and R.-P. Riwar, Phys. Rev. B 107, 035408 (2023).
  30. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
  31. A. Hosseinkhani and G. Catelani, Phys. Rev. B 97, 054513 (2018).
  32. Note that the capacitive coupling term ∼λzsimilar-toabsentsuperscript𝜆𝑧\sim\lambda^{z}∼ italic_λ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT can be generally written inside the charging energy ∼ECsimilar-toabsentsubscript𝐸𝐶\sim E_{C}∼ italic_E start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT upon quadratic completion, such that the electron-electron interactions in the normal metal may have an artifical addition due to a quadratic term ∼(λz)2similar-toabsentsuperscriptsuperscript𝜆𝑧2\sim(\lambda^{z})^{2}∼ ( italic_λ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.
  33. L. González Rosado, Electron-hole diffusion in disordered superconductors, Ph.D. thesis, RWTH Aachen University (2021).
  34. See Supplemental Material at the end of document.
  35. A. Cottet, Implementation of a quantum bit in a superconducting circuit, Ph.D. thesis, Université Paris VI (2002).
  36. J. Ulrich and F. Hassler, Phys. Rev. B 94, 094505 (2016).
  37. C. Koliofoti and R.-P. Riwar, arXiv:2204.13633 .
  38. A. G. Abanov, D. A. Ivanov, and Y. Qian, J. Phys. A Math. Theor. 44, 485001 (2011).
  39. D. A. Ivanov and I. P. Levkivskyi, Europhysics Letters 113, 17009 (2016).
  40. W. A. Little, Phys. Rev. 134, A1416 (1964).
  41. R. Landauer, Collect. Phenom. 2, 167 (1976).
  42. G. Catalan, D. Jiménez, and A. Gruverman, Nature Materials 14, 137 (2015).
  43. F. Zhang and C. L. Kane, Phys. Rev. Lett. 113, 036401 (2014).
  44. K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B 61, 16397 (2000).
  45. D. B. Gutman, Y. Gefen, and A. D. Mirlin, Phys. Rev. Lett. 105, 256802 (2010).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: