Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting Metastable Cosmic String Breaking

Published 25 Dec 2023 in hep-ph, astro-ph.CO, and hep-th | (2312.15662v2)

Abstract: Metastable cosmic strings appear in models of new physics with a two-step symmetry breaking $G\to H\to 1$, where $\pi_1(H)\neq 0$ and $\pi_1(G)=0$. They decay via the monopole-antimonopole pair creation inside. Conventionally, the breaking rate has been estimated by an infinitely thin string approximation, which requires a large hierarchy between the symmetry breaking scales. In this paper, we reexamine it by taking into account the finite sizes of both the cosmic string and the monopole. We obtain a robust lower limit on the tunneling factor $e{-S_B}$ even for regimes the conventional estimate is unreliable. In particular, it is relevant to the cosmic string interpretation of the gravitational wave signals recently reported by pulsar timing array experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
  2. A. Vilenkin, Nucl. Phys. B 196, 240 (1982).
  3. M. Hindmarsh, Prog. Theor. Phys. Suppl. 190, 197 (2011), arXiv:1106.0391 [astro-ph.CO] .
  4. P. Auclair et al., JCAP 04, 034 (2020), arXiv:1909.00819 [astro-ph.CO] .
  5. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
  6. J. Antoniadis et al. (EPTA, InPTA:), Astron. Astrophys. 678, A50 (2023), arXiv:2306.16214 [astro-ph.HE] .
  7. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  8. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  9. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023a), arXiv:2306.16219 [astro-ph.HE] .
  10. R. Maji and W.-I. Park,   (2023), arXiv:2308.11439 [hep-ph] .
  11. G. Servant and P. Simakachorn,   (2023), arXiv:2312.09281 [hep-ph] .
  12. J. Preskill and A. Vilenkin, Phys. Rev. D 47, 2324 (1993), arXiv:hep-ph/9209210 .
  13. M. Shifman and A. Yung, Phys. Rev. D 66, 045012 (2002), arXiv:hep-th/0205025 .
  14. G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).
  15. A. M. Polyakov, JETP Lett. 20, 194 (1974).
  16. M. Shifman, Advanced topics in quantum field theory.: A lecture course (Cambridge Univ. Press, Cambridge, UK, 2012).
  17. E. B. Bogomolny and M. S. Marinov, Yad. Fiz. 23, 676 (1976).
  18. T. W. Kirkman and C. K. Zachos, Phys. Rev. D 24, 999 (1981).
  19. A. Yung, Nucl. Phys. B 562, 191 (1999), arXiv:hep-th/9906243 .
  20. M. Hindmarsh and T. W. B. Kibble, Phys. Rev. Lett. 55, 2398 (1985).
  21. A. E. Everett and M. Aryal, Phys. Rev. Lett. 57, 646 (1986).
  22. T. W. B. Kibble and T. Vachaspati, J. Phys. G 42, 094002 (2015), arXiv:1506.02022 [astro-ph.CO] .
  23. A. Chitose and M. Ibe, Phys. Rev. D 108, 035044 (2023), arXiv:2303.10861 [hep-ph] .
  24. V. G. Kiselev and K. G. Selivanov, JETP Lett. 39, 85 (1984).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.