Papers
Topics
Authors
Recent
2000 character limit reached

A recursive neural-network-based subgrid-scale model for large eddy simulation: application to homogeneous isotropic turbulence (2312.15143v2)

Published 23 Dec 2023 in physics.flu-dyn

Abstract: We introduce a novel recursive process to a neural-network-based subgrid-scale (NN-based SGS) model for large eddy simulation (LES) of high Reynolds number turbulent flow. This process is designed to allow an SGS model to be applicable to a hierarchy of different grid sizes without requiring an expensive filtered direct numerical simulation (DNS) data: 1) train an NN-based SGS model with filtered DNS data at a low Reynolds number; 2) apply the trained SGS model to LES at a higher Reynolds number; 3) update this SGS model with training data augmented with filtered LES (fLES) data, accommodating coarser filter size; 4) apply the updated NN to LES at a further higher Reynolds number; 5) go back to 3) until a target (very coarse) filter size divided by the Kolmogorov length scale is reached. We also construct an NN-based SGS model using a dual NN architecture whose outputs are the SGS normal stresses for one NN and the SGS shear stresses for the other NN. The input is composed of the velocity gradient tensor and grid size. Furthermore, for the application of an NN-based SGS model trained with one flow to another flow, we modify the NN by eliminating bias and introducing leaky rectified linear unit function as an activation function. The present recursive SGS model is applied to forced homogeneous isotropic turbulence (FHIT), and successfully predicts FHIT at high Reynolds numbers. The present model trained from FHIT is also applied to decaying homogeneous isotropic turbulence, and shows an excellent prediction performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.