Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Information-seeking polynomial NARX model-predictive control through expected free energy minimization (2312.15046v1)

Published 22 Dec 2023 in eess.SY, cs.LG, cs.SY, and stat.ML

Abstract: We propose an adaptive model-predictive controller that balances driving the system to a goal state and seeking system observations that are informative with respect to the parameters of a nonlinear autoregressive exogenous model. The controller's objective function is derived from an expected free energy functional and contains information-theoretic terms expressing uncertainty over model parameters and output predictions. Experiments illustrate how parameter uncertainty affects the control objective and evaluate the proposed controller for a pendulum swing-up task.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. K. Friston, F. Rigoli, D. Ognibene, C. Mathys, T. Fitzgerald, and G. Pezzulo, “Active inference and epistemic value,” Cognitive neuroscience, vol. 6, no. 4, pp. 187–214, 2015.
  2. M. Baioumy, P. Duckworth, B. Lacerda, and N. Hawes, “Active inference for integrated state-estimation, control, and learning,” in IEEE International Conference on Robotics and Automation, 2021, pp. 4665–4671.
  3. T. van de Laar, A. Özçelikkale, and H. Wymeersch, “Application of the free energy principle to estimation and control,” IEEE Transactions on Signal Processing, vol. 69, pp. 4234–4244, 2021.
  4. L. Pio-Lopez, A. Nizard, K. Friston, and G. Pezzulo, “Active inference and robot control: a case study,” Journal of The Royal Society Interface, vol. 13, no. 122, p. 20160616, 2016.
  5. A. A. Meera and M. Wisse, “Free energy principle based state and input observer design for linear systems with colored noise,” in American Control Conference, 2020, pp. 5052–5058.
  6. J. Huebotter, S. Thill, M. v. Gerven, and P. Lanillos, “Learning policies for continuous control via transition models,” in International Workshop on Active Inference.   Springer, 2023, pp. 162–178.
  7. K. Fujimoto and Y. Takaki, “On system identification for ARMAX models based on the variational Bayesian method,” in IEEE Conference on Decision and Control, 2016, pp. 1217–1222.
  8. W. M. Kouw, A. Podusenko, M. T. Koudahl, and M. Schoukens, “Variational message passing for online polynomial NARMAX identification,” in American Control Conference, 2022, pp. 2755–2760.
  9. A. Podusenko, S. Akbayrak, İ. Şenöz, M. Schoukens, and W. M. Kouw, “Message passing-based system identification for NARMAX models,” in IEEE Conference on Decision and Control, 2022, pp. 7309–7314.
  10. C. Leung, S. Huang, N. Kwok, and G. Dissanayake, “Planning under uncertainty using model predictive control for information gathering,” Robotics and Autonomous Systems, vol. 54, no. 11, pp. 898–910, 2006.
  11. G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Information-theoretic model predictive control: Theory and applications to autonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603–1622, 2018.
  12. T. van de Laar, M. Koudahl, B. van Erp, and B. de Vries, “Active inference and epistemic value in graphical models,” Frontiers in Robotics and AI, vol. 9, p. 794464, 2022.
  13. D. Khandelwal, M. Schoukens, and R. Tóth, “On the simulation of polynomial NARMAX models,” in IEEE Conference on Decision and Control, 2018, pp. 1445–1450.
  14. P. K. Mogensen and A. N. Riseth, “Optim: A mathematical optimization package for Julia,” Journal of Open Source Software, vol. 3, no. 24, p. 615, 2018.
  15. M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient approach to policy search,” in International Conference on Machine Learning, 2011, pp. 465–472.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.