Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Untangling the valley structure of states for intravalley exchange anisotropy in lead chalcogenides quantum dots (2312.14918v2)

Published 22 Dec 2023 in cond-mat.mes-hall

Abstract: We put forward a generalized procedure which allows to restore the bulk-like electron and hole wave functions localized in certain valleys from the wave functions of quantum confined electron/hole states obtained in atomistic calculations of nanostructures. As a demonstration, the procedure is applied to the lead chalcogenide quantum dots to extract the effective intravalley Hamiltonian of the exchange interaction for the ground exciton state PbS and PbSe quantum dots. Renormalization of the anisotropic intravalley matrix elemets of velocity is also calculated. The results demonstrate that the matrix elements of intravalley exchange in PbS quantum dots are much more anisotropic than ones in PbSe.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. L. Efros and L. E. Brus, Nanocrystal quantum dots: From discovery to modern development, ACS Nano 15, 6192 (2021).
  2. I. D. Avdeev, S. V. Goupalov, and M. O. Nestoklon, Effective landé factors of electrons and holes in lead chalcogenide nanocrystals, Phys. Rev. B 107, 035414 (2023).
  3. J. M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev. 97, 869 (1955).
  4. P. C. Sercel and K. J. Vahala, Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation, Phys. Rev. B 42, 3690 (1990).
  5. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
  6. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
  7. A. N. Poddubny, M. O. Nestoklon, and S. V. Goupalov, Anomalous suppression of valley splittings in lead salt nanocrystals without inversion center, Phys. Rev. B 86, 035324 (2012).
  8. I. D. Avdeev, M. O. Nestoklon, and S. V. Goupalov, Exciton fine structure in lead chalcogenide quantum dots: Valley mixing and crucial role of intervalley electron–hole exchange, Nano Lett. 20, 8897 (2020).
  9. I. Kang and F. W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots, J. Opt. Soc. Am. B 14, 1632 (1997).
  10. S. V. Goupalov, Comment on “electronic structure and optical properties of quantum-confined lead salt nanowires”, Phys. Rev. B 84, 037303 (2011).
  11. M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko, Spin and valley-orbit splittings in SiGe/Si heterostructures, Phys. Rev. B 73, 235334 (2006).
  12. A. Paul and G. Klimeck, Atomistic study of electronic structure of PbSe nanowires, Applied Physics Letters 98, 212105 (2011).
  13. I. D. Avdeev, Shape effect on the valley splitting in lead selenide nanowires, Phys. Rev. B 99, 195303 (2019).
  14. P.-O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys. 18, 365 (1950).
  15. M. O. Nestoklon, R. Benchamekh, and P. Voisin, Virtual crystal description of III–v semiconductor alloys in the tight binding approach, J. Phys.: Condens. Matter 28, 305801 (2016).
  16. E. L. Ivchenko and M. O. Nestoklon, Optical transitions on a type ii semiconductor interface in the empirical tight-binding theory, Journal of Experimental and Theoretical Physics 94, 644 (2002).
  17. I. D. Avdeev, M. O. Nestoklon, and S. V. Goupalov, Correction to “exciton fine structure in lead chalcogenide quantum dots: Valley mixing and crucial role of intervalley electron–hole exchange”, Nano Letters 22, 7751 (2022).
  18. S. V. Gupalov, E. L. Ivchenko, and A. V. Kavokin, Fine structure of localized exciton levels in quantum wells, Journal of Experimental and Theoretical Physics 86, 388 (1998).
  19. S. V. Gupalov and E. L. Ivchenko, The fine structure of excitonic levels in cdse nanocrystals, Physics of the Solid State 42, 2030–2038 (2000).
  20. F. W. Wise, Lead salt quantum dots: the limit of strong quantum confinement, Accounts of Chemical Research 33, 773–780 (2000).
  21. G. Bir and G. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).
  22. A. Zee, Group theory in a nutshell for physicists, In a Nutshell (Princeton University Press, Princeton, NJ, 2016).
  23. D. S. Matteson and R. S. Tsay, Independent component analysis via distance covariance, Journal of the American Statistical Association 112, 623 (2017).
  24. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum theory of angular momentum (World Scientific, 1988).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: