Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural network models for preferential concentration of particles in two-dimensional turbulence (2312.14829v1)

Published 22 Dec 2023 in physics.flu-dyn

Abstract: Cluster and void formations are key processes in the dynamics of particle-laden turbulence. In this work, we assess the performance of various neural network models for synthesizing preferential concentration fields of particles in turbulence. A database of direct numerical simulations of homogeneous isotropic two-dimensional turbulence with one-way coupled inertial point particles, is used to train the models using vorticity as the input to predict the particle number density fields. We compare autoencoder, U--Net, generative adversarial network (GAN), and diffusion model approaches, and assess the statistical properties of the generated particle number density fields. We find that the GANs are superior in predicting clusters and voids, and therefore result in the best performance. Additionally, we explore a concept of ``supersampling", where neural networks can be used to predict full particle data using only the information of few particles, which yields promising perspectives for reducing the computational cost of expensive DNS computations by avoiding the tracking of millions of particles. We also explore the inverse problem of synthesizing the enstrophy fields using the particle number density distribution as the input at different Stokes numbers. Hence, our study also indicates the potential use of neural networks to predict turbulent flow statistics using experimental measurements of inertial particles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube