Papers
Topics
Authors
Recent
2000 character limit reached

Scattering of scalar and tensor glueballs (2312.14822v1)

Published 22 Dec 2023 in hep-ph

Abstract: The scalar glueball, the lightest state in the gluonic Yang-Mills (YM) sector of QCD, is stable in that framework. The scattering of two scalar glueballs is therefore a well defined process in YM, which can be studied with the tools of quantum field theory and partial wave analysis. By using a dilaton Lagrangian, which contains a single dimensionful parameter $\Lambda_G$, in the context of proper unitarization procedures, we find that a bound state is expected to form in the $S$-wave if $\Lambda_G$ is below a certain critical value. Additionally, we also evaluate the impact of a cutoff function on the obtained results and we discuss possible future comparison of our model with Lattice QCD and, eventually, with experimental searches. We show that the expansion into partial wave can also be useful (together with the covariant helicity formalism) in the study of decays of mesons. This method allows us to describe the ratio between two different waves in the same decays. We use this information to describe decay widths and other relevant quantities. Moreover, we show that the results obtained using the covariant helicity formalism do not change when rotating the reference frame centered in the decaying particle. In this way, an alternative calculation scheme is presented. Finally, we use the so-called Glueball Resonance Gas (GRG) model to describe the thermal properties of YM below the critical temperature for deconfinement. The quantities obtained from this model (such as the pressure) can be compared with those obtained from lattice works. The contribution of heavier glueballs and the interaction between scalar and tensor glueballs turns out to be rather small. Within this context, the scattering of two tensor glueballs, required to estimate its contribution in the GRG model, is investigated in detail.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. C. Ratti and R. Bellwied, The Deconfinement Transition of QCD; Theory Meets Experiment. 2021.
  2. D. H. Rischke, “The Quark gluon plasma in equilibrium,” Prog. Part. Nucl. Phys. 52 (2004) 197–296, arXiv:nucl-th/0305030.
  3. N. Brambilla et al., “QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives,” Eur. Phys. J. C 74 no. 10, (2014) 2981, arXiv:1404.3723 [hep-ph].
  4. H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi, and C. Ratti, “Mesonic correlation functions at finite temperature and density in the Nambu-Jona-Lasinio model with a Polyakov loop,” Phys. Rev. D 75 (2007) 065004, arXiv:hep-ph/0609116.
  5. P. Kovács, Z. Szép, and G. Wolf, “Existence of the critical endpoint in the vector meson extended linear sigma model,” Phys. Rev. D 93 no. 11, (2016) 114014, arXiv:1601.05291 [hep-ph].
  6. C. Sasaki and K. Redlich, “Effective gluon potential and Yang-Mills thermodynamics,” PoS ConfinementX (2012) 179, arXiv:1301.7645 [hep-ph].
  7. A. Heinz, S. Struber, F. Giacosa, and D. H. Rischke, “Role of the tetraquark in the chiral phase transition,” Phys. Rev. D 79 (2009) 037502, arXiv:0805.1134 [hep-ph].
  8. A. Heinz, F. Giacosa, and D. H. Rischke, “Restoration of chiral symmetry in the large-Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT limit,” Phys. Rev. D 85 (2012) 056005, arXiv:1110.1528 [hep-ph].
  9. A. Pilaftsis and D. Teresi, “Symmetry Improved CJT Effective Action,” Nucl. Phys. B 874 no. 2, (2013) 594–619, arXiv:1305.3221 [hep-ph].
  10. R. Alkofer, A. Maas, W. A. Mian, M. Mitter, J. París-López, J. M. Pawlowski, and N. Wink, “Bound state properties from the functional renormalization group,” Phys. Rev. D 99 no. 5, (2019) 054029, arXiv:1810.07955 [hep-ph].
  11. W.-j. Fu, “QCD at finite temperature and density within the fRG approach: An overview,” arXiv:2205.00468 [hep-ph].
  12. J. M. Pawlowski, “Aspects of the functional renormalisation group,” Annals Phys. 322 (2007) 2831–2915, arXiv:hep-th/0512261.
  13. A. Koenigstein, M. J. Steil, N. Wink, E. Grossi, J. Braun, M. Buballa, and D. H. Rischke, “Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases - Part I: The O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) model,” arXiv:2108.02504 [cond-mat.stat-mech].
  14. W. Broniowski, F. Giacosa, and V. Begun, “Cancellation of the σ𝜎\sigmaitalic_σ meson in thermal models,” Phys. Rev. C 92 no. 3, (2015) 034905, arXiv:1506.01260 [nucl-th].
  15. P. M. Lo, “S-matrix formulation of thermodynamics with N-body scatterings,” Eur. Phys. J. C 77 no. 8, (2017) 533, arXiv:1707.04490 [hep-ph].
  16. P. M. Lo, B. Friman, M. Marczenko, K. Redlich, and C. Sasaki, “Repulsive interactions and their effects on the thermodynamics of a hadron gas,” Phys. Rev. C 96 no. 1, (2017) 015207, arXiv:1703.00306 [nucl-th].
  17. P. M. Lo, B. Friman, K. Redlich, and C. Sasaki, “S-matrix analysis of the baryon electric charge correlation,” Phys. Lett. B 778 (2018) 454–458, arXiv:1710.02711 [hep-ph].
  18. P. M. Lo and F. Giacosa, “Thermal contribution of unstable states,” Eur. Phys. J. C 79 no. 4, (2019) 336, arXiv:1902.03203 [hep-ph].
  19. S. Samanta and F. Giacosa, “QFT treatment of a bound state in a thermal gas,” Phys. Rev. D 102 (2020) 116023, arXiv:2009.13547 [hep-ph].
  20. S. Samanta and F. Giacosa, “Role of bound states and resonances in scalar QFT at nonzero temperature,” Phys. Rev. D 107 no. 3, (2023) 036001, arXiv:2110.14752 [hep-ph].
  21. A. Andronic, P. Braun-Munzinger, and J. Stachel, “Thermal hadron production in relativistic nuclear collisions: The Hadron mass spectrum, the horn, and the QCD phase transition,” Phys. Lett. B 673 (2009) 142–145, arXiv:0812.1186 [nucl-th]. [Erratum: Phys.Lett.B 678, 516 (2009)].
  22. J. O. Andersen, L. E. Leganger, M. Strickland, and N. Su, “The QCD trace anomaly,” Phys. Rev. D 84 (2011) 087703, arXiv:1106.0514 [hep-ph].
  23. A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “The statistical model in Pb-Pb collisions at the LHC,” Nucl. Phys. A 904-905 (2013) 535c–538c, arXiv:1210.7724 [nucl-th].
  24. A. Andronic, P. Braun-Munzinger, M. K. Köhler, A. Mazeliauskas, K. Redlich, J. Stachel, and V. Vislavicius, “The multiple-charm hierarchy in the statistical hadronization model,” JHEP 07 (2021) 035, arXiv:2104.12754 [hep-ph].
  25. P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V. Mantovani Sarti, M. Nahrgang, and C. Ratti, “Freeze-out conditions from net-proton and net-charge fluctuations at RHIC,” Phys. Lett. B 738 (2014) 305–310, arXiv:1403.4903 [hep-ph].
  26. G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, and J. Rafelski, “SHARE: Statistical hadronization with resonances,” Comput. Phys. Commun. 167 (2005) 229–251, arXiv:nucl-th/0404083.
  27. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, “The QCD equation of state with dynamical quarks,” JHEP 11 (2010) 077, arXiv:1007.2580 [hep-lat].
  28. S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, “Precision SU(3) lattice thermodynamics for a large temperature range,” JHEP 07 (2012) 056, arXiv:1204.6184 [hep-lat].
  29. S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, “Full result for the QCD equation of state with 2+1 flavors,” Phys. Lett. B 730 (2014) 99–104, arXiv:1309.5258 [hep-lat].
  30. F. Karsch and E. Laermann, “Thermodynamics and in medium hadron properties from lattice QCD,” arXiv:hep-lat/0305025.
  31. D. E. Miller, “Lattice QCD Calculation for the Physical Equation of State,” Phys. Rept. 443 (2007) 55–96, arXiv:hep-ph/0608234.
  32. S. Sharma, “QCD Thermodynamics on the Lattice,” Adv. High Energy Phys. 2013 (2013) 452978, arXiv:1403.2102 [hep-lat].
  33. HotQCD Collaboration, A. Bazavov et al., “Equation of state in ( 2+1 )-flavor QCD,” Phys. Rev. D 90 (2014) 094503, arXiv:1407.6387 [hep-lat].
  34. P. Levai and U. W. Heinz, “Massive gluons and quarks and the equation of state obtained from SU(3) lattice QCD,” Phys. Rev. C 57 (1998) 1879–1890, arXiv:hep-ph/9710463.
  35. A. Peshier, B. Kampfer, O. P. Pavlenko, and G. Soff, “A Massive quasiparticle model of the SU(3) gluon plasma,” Phys. Rev. D 54 (1996) 2399–2402.
  36. F. Giacosa, “Analytical study of a gas of gluonic quasiparticles at high temperature: Effective mass, pressure and trace anomaly,” Phys. Rev. D 83 (2011) 114002, arXiv:1009.4588 [hep-ph].
  37. G. Lacroix, C. Semay, D. Cabrera, and F. Buisseret, “Glueballs and the Yang-Mills plasma in a T𝑇Titalic_T-matrix approach,” Phys. Rev. D 87 no. 5, (2013) 054025, arXiv:1210.1716 [hep-ph].
  38. R. D. Pisarski, “Finite-temperature qcd at large n𝑛nitalic_n,” Phys. Rev. D 29 (Mar, 1984) 1222–1227. https://link.aps.org/doi/10.1103/PhysRevD.29.1222.
  39. K.-I. Kondo, “Confinement–deconfinement phase transition and gauge-invariant gluonic mass in Yang-Mills theory,” arXiv:1508.02656 [hep-th].
  40. L. Zhang, C. Chen, Y. Chen, and M. Huang, “Spectra of glueballs and oddballs and the equation of state from holographic QCD,” Phys. Rev. D 105 no. 2, (2022) 026020, arXiv:2106.10748 [hep-ph].
  41. V. Mykhaylova, M. Bluhm, K. Redlich, and C. Sasaki, “Quark-flavor dependence of the shear viscosity in a quasiparticle model,” Phys. Rev. D 100 no. 3, (2019) 034002, arXiv:1906.01697 [hep-ph].
  42. V. Mykhaylova and C. Sasaki, “Impact of quark quasiparticles on transport coefficients in hot QCD,” Phys. Rev. D 103 no. 1, (2021) 014007, arXiv:2007.06846 [hep-ph].
  43. F. Giacosa, “Dynamical generation and dynamical reconstruction,” Phys. Rev. D 80 (2009) 074028, arXiv:0903.4481 [hep-ph].
  44. R. D. Pisarski, “Fuzzy Bags and Wilson Lines,” Prog. Theor. Phys. Suppl. 168 (2007) 276–284, arXiv:hep-ph/0612191.
  45. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, “Thermodynamics of SU(3) lattice gauge theory,” Nucl. Phys. B 469 (1996) 419–444, arXiv:hep-lat/9602007.
  46. M. Panero, “Thermodynamics of the QCD plasma and the large-N limit,” Phys. Rev. Lett. 103 (2009) 232001, arXiv:0907.3719 [hep-lat].
  47. B. Lucini and M. Panero, “SU(N) gauge theories at large N,” Phys. Rept. 526 (2013) 93–163, arXiv:1210.4997 [hep-th].
  48. M. Caselle, L. Castagnini, A. Feo, F. Gliozzi, and M. Panero, “Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining phase,” JHEP 06 (2011) 142, arXiv:1105.0359 [hep-lat].
  49. M. Caselle, A. Nada, and M. Panero, “Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories,” JHEP 07 (2015) 143, arXiv:1505.01106 [hep-lat]. [Erratum: JHEP 11, 016 (2017)].
  50. P. Alba, W. M. Alberico, A. Nada, M. Panero, and H. Stöcker, “Excluded-volume effects for a hadron gas in Yang-Mills theory,” Phys. Rev. D 95 no. 9, (2017) 094511, arXiv:1611.05872 [hep-lat].
  51. Y. Chen et al., “Glueball spectrum and matrix elements on anisotropic lattices,” Phys. Rev. D 73 (2006) 014516, arXiv:hep-lat/0510074.
  52. H. B. Meyer, “Glueball regge trajectories,” arXiv:hep-lat/0508002.
  53. A. Athenodorou and M. Teper, “The glueball spectrum of SU(3) gauge theory in 3 + 1 dimensions,” JHEP 11 (2020) 172, arXiv:2007.06422 [hep-lat].
  54. J.-X. Chen and J.-C. Su, “Glueball spectrum based on a rigorous three-dimensional relativistic equation for two gluon bound states. II. Calculation of the glueball spectrum,” Phys. Rev. D 69 (2004) 076003, arXiv:hep-ph/0506114.
  55. W. Ochs, “The Status of Glueballs,” J. Phys. G 40 (2013) 043001, arXiv:1301.5183 [hep-ph].
  56. V. Mathieu, N. Kochelev, and V. Vento, “The Physics of Glueballs,” Int. J. Mod. Phys. E 18 (2009) 1–49, arXiv:0810.4453 [hep-ph].
  57. C. Amsler and F. E. Close, “Is f0 (1500) a scalar glueball?,” Phys. Rev. D 53 (1996) 295–311, arXiv:hep-ph/9507326.
  58. S. Janowski, F. Giacosa, and D. H. Rischke, “Is f0(1710) a glueball?,” Phys. Rev. D 90 no. 11, (2014) 114005, arXiv:1408.4921 [hep-ph].
  59. F. Giacosa, “Modelling glueballs,” EPJ Web of Conferences 130 (2016) 01009. http://dx.doi.org/10.1051/epjconf/201613001009.
  60. I. Szanyi, L. Jenkovszky, R. Schicker, and V. Svintozelskyi, “Pomeron/glueball and odderon/oddball trajectories,” Nucl. Phys. A 998 (2020) 121728, arXiv:1910.02494 [hep-ph].
  61. F. Buisseret, “Glueballs, gluon condensate, and pure glue QCD below T(c),” Eur. Phys. J. C 68 (2010) 473–478, arXiv:0912.0678 [hep-ph].
  62. R. Hagedorn, “Statistical thermodynamics of strong interactions at high-energies,” Nuovo Cim. Suppl. 3 (1965) 147–186.
  63. H. B. Meyer, “High-Precision Thermodynamics and Hagedorn Density of States,” Phys. Rev. D 80 (2009) 051502, arXiv:0905.4229 [hep-lat].
  64. J. Braun, A. Eichhorn, H. Gies, and J. M. Pawlowski, “On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory,” Eur. Phys. J. C 70 (2010) 689–702, arXiv:1007.2619 [hep-ph].
  65. M. Gockeler, R. Horsley, A. C. Irving, D. Pleiter, P. E. L. Rakow, G. Schierholz, and H. Stuben, “A Determination of the Lambda parameter from full lattice QCD,” Phys. Rev. D 73 (2006) 014513, arXiv:hep-ph/0502212.
  66. ALPHA Collaboration, M. Guagnelli, R. Sommer, and H. Wittig, “Precision computation of a low-energy reference scale in quenched lattice QCD,” Nucl. Phys. B 535 (1998) 389–402, arXiv:hep-lat/9806005.
  67. R. Sommer, “Scale setting in lattice QCD,” PoS LATTICE2013 (2014) 015, arXiv:1401.3270 [hep-lat].
  68. C. Bonanno, M. D’Elia, B. Lucini, and D. Vadacchino, “Towards glueball masses of large-N SU(N) pure-gauge theories without topological freezing,” Phys. Lett. B 833 (2022) 137281, arXiv:2205.06190 [hep-lat].
  69. M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, “Higher spin glueballs from functional methods,” Eur. Phys. J. C 81 no. 12, (2021) 1083, arXiv:2110.09180 [hep-ph]. [Erratum: Eur.Phys.J.C 82, 38 (2022)].
  70. H. Sanchis-Alepuz, C. S. Fischer, C. Kellermann, and L. von Smekal, “Glueballs from the Bethe-Salpeter equation,” Phys. Rev. D 92 (2015) 034001, arXiv:1503.06051 [hep-ph].
  71. M. Q. Huber, C. S. Fischer, and H. Sanchis-Alepuz, “Spectrum of scalar and pseudoscalar glueballs from functional methods,” Eur. Phys. J. C 80 no. 11, (2020) 1077, arXiv:2004.00415 [hep-ph].
  72. G. ’t Hooft, “A Two-Dimensional Model for Mesons,” Nucl. Phys. B 75 (1974) 461–470.
  73. E. Witten, “Baryons in the 1/n Expansion,” Nucl. Phys. B 160 (1979) 57–115.
  74. R. F. Lebed, “Phenomenology of large N(c) QCD,” Czech. J. Phys. 49 (1999) 1273–1306, arXiv:nucl-th/9810080.
  75. P. Masjuan, E. Ruiz Arriola, and W. Broniowski, “Systematics of radial and angular-momentum Regge trajectories of light non-strange q\barq-states,” Phys. Rev. D 85 (2012) 094006, arXiv:1203.4782 [hep-ph].
  76. A. V. Anisovich, V. V. Anisovich, and A. V. Sarantsev, “Systematics of q anti-q states in the (n, M**2) and (J, M**2) planes,” Phys. Rev. D 62 (2000) 051502, arXiv:hep-ph/0003113.
  77. H.-X. Chen, W. Chen, and S.-L. Zhu, “Two- and three-gluon glueballs of C=+,” Phys. Rev. D 104 no. 9, (2021) 094050, arXiv:2107.05271 [hep-ph].
  78. R. Dashen, S.-K. Ma, and H. J. Bernstein, “S Matrix formulation of statistical mechanics,” Phys. Rev. 187 (1969) 345–370.
  79. R. Venugopalan and M. Prakash, “Thermal properties of interacting hadrons,” Nucl. Phys. A 546 (1992) 718–760.
  80. W. Weinhold, B. L. Friman, and W. Noerenberg, “Thermodynamics of an interacting pi N system,” Acta Phys. Polon. B 27 (1996) 3249–3253.
  81. W. Weinhold, B. Friman, and W. Norenberg, “Thermodynamics of Delta resonances,” Phys. Lett. B 433 (1998) 236–242, arXiv:nucl-th/9710014.
  82. W. Broniowski, W. Florkowski, and B. Hiller, “Thermal analysis of production of resonances in relativistic heavy ion collisions,” Phys. Rev. C 68 (2003) 034911, arXiv:nucl-th/0306034.
  83. A. Dash, S. Samanta, and B. Mohanty, “Interacting hadron resonance gas model in the K -matrix formalism,” Phys. Rev. C 97 no. 5, (2018) 055208, arXiv:1802.04998 [nucl-th].
  84. A. Dash, S. Samanta, and B. Mohanty, “Thermodynamics of a gas of hadrons with attractive and repulsive interactions within an S -matrix formalism,” Phys. Rev. C 99 no. 4, (2019) 044919, arXiv:1806.02117 [hep-ph].
  85. F. Giacosa, A. Pilloni, and E. Trotti, “Glueball–glueball scattering and the glueballonium,” Eur. Phys. J. C 82 no. 5, (2022) 487, arXiv:2110.05582 [hep-ph].
  86. E. Trotti and F. Giacosa, “On the mass of the glueballonium,” Rev. Mex. Fis. Suppl. 3 no. 3, (2022) 0308014, arXiv:2112.15010 [hep-ph].
  87. E. Trotti, “Emergence of ghost in once-subtracted on-shell unitarization in glueball-glueball scattering,” arXiv:2211.12253 [hep-ph].
  88. A. A. Migdal and M. A. Shifman, “Dilaton Effective Lagrangian in Gluodynamics,” Phys. Lett. B 114 (1982) 445–449.
  89. P. G. Ortega, D. R. Entem, F. Fernandez, and E. Ruiz Arriola, “Counting states and the Hadron Resonance Gas: Does X(3872) count?,” Phys. Lett. B 781 (2018) 678–683, arXiv:1707.01915 [hep-ph].
  90. P. M. Lo, “Thermal study of a coupled-channel system: a brief review,” Eur. Phys. J. A 57 no. 2, (2021) 60.
  91. B. Lucini and M. Panero, “Introductory lectures to large-N𝑁\scriptsize{N}italic_N QCD phenomenology and lattice results,” Prog. Part. Nucl. Phys. 75 (2014) 1–40, arXiv:1309.3638 [hep-th].
  92. P. Kovács, G. Kovács, and F. Giacosa, “Fate of the critical endpoint at large Nc,” Phys. Rev. D 106 no. 11, (2022) 116016, arXiv:2209.09568 [hep-ph].
  93. J. Schechter, “A two glueball effective Lagrangian,”.
  94. V. Shastry and F. Giacosa, “Higgs-Higgs scattering and the (non-)existence of the Higgsonium,” arXiv:2212.01272 [hep-ph].
  95. J. L. Petersen, “Meson-meson scattering,” Phys. Rept. 2 (1971) 155–252.
  96. Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.